AI大模型编写多线程并发框架(六十一):从零开始搭建框架

本文主要是介绍AI大模型编写多线程并发框架(六十一):从零开始搭建框架,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

系列文章目录


文章目录

  • 系列文章目录
  • 前言
    • 一、项目背景
    • 二、第一轮对话-让AI大模型理解我们的诉求
    • 二、第二轮对话-优化任务处理方法和结果处理方法
    • 三、参考文章


前言

在这个充满技术创新的时代,AI大模型正成为开发者们的新宠。它们可以帮助我们完成从简单的问答到复杂的编程任务,所以AI编程将会是未来的主流方向,利用AI大模型的能力,本文将介绍从零到一用AI大模型编写一个多线程并发框架。

一、项目背景

由于博主每次批量处理数据任务时,都需要去考虑线程池各种参数,例如考虑任务执行速率、任务监控、任务回调、异常处理等。由于每个需求的实际诉求不一样,所以数据处理任务的代替代码都一样,只有部分有差异,从而导致代码仓库里各种复制粘贴,
这不是博主想要的,于是,萌发了一个封装一个多线程组件框架的想法,只需要传入自定义任务等参数,其它东西都不需要关心。

使用示例如下:源码地址


// 创建一个MmcTaskExecutor实例,用于执行单次长耗时任务
// 下面是创建一个计算从1加到100的任务,总共100个任务,采用fork分治算法,阈值为10,总共任务为100 / 10 * 2 = 20个大任务,执行速率约为10/s
MmcTaskExecutor<Integer, Integer> mmcTaskExecutor = MmcTaskExecutor.<Integer, Integer>builder().taskSource(IntStream.rangeClosed(1, 100).boxed().collect(Collectors.toList())) // 设置任务源.taskProcessor(x -> x.stream().reduce(0, Integer::sum)) // 设置任务处理方法.taskMerger(Integer::sum) // 设置结果处理方法(可选).threshold(10) // 设置任务处理阈值(可选).taskName("mmcTaskExample") // 设置任务名称.rateLimiter(10, 20)  // 设置速率限制,容量为10,每秒产生令牌为20,休眠时间为10ms.forkJoinPoolConcurrency(4) // 设置ForkJoinPool的并发度为4.build();// 同步执行并打印结果        
System.out.println("result: " + mmcTaskExecutor.execute());// 任务执行过程监控
[mmcTaskExample] Tasks submitted. Total tasks: 100
[mmcTaskExample] Task started. Completed tasks: 14, remaining tasks: 86
[mmcTaskExample] Task started. Completed tasks: 14, remaining tasks: 86
[mmcTaskExample] Task started. Completed tasks: 20, remaining tasks: 80
[mmcTaskExample] Task started. Completed tasks: 26, remaining tasks: 74
[mmcTaskExample] Task started. Completed tasks: 33, remaining tasks: 67
[mmcTaskExample] Task started. Completed tasks: 40, remaining tasks: 60
[mmcTaskExample] Task started. Completed tasks: 46, remaining tasks: 54
[mmcTaskExample] Task started. Completed tasks: 52, remaining tasks: 48
[mmcTaskExample] Task started. Completed tasks: 58, remaining tasks: 42
[mmcTaskExample] Task started. Completed tasks: 64, remaining tasks: 36
[mmcTaskExample] Task started. Completed tasks: 70, remaining tasks: 30
[mmcTaskExample] Task started. Completed tasks: 76, remaining tasks: 24
[mmcTaskExample] Task started. Completed tasks: 82, remaining tasks: 18
[mmcTaskExample] Task started. Completed tasks: 88, remaining tasks: 12
[mmcTaskExample] Task started. Completed tasks: 94, remaining tasks: 6
[mmcTaskExample] Task started. Completed tasks: 100, remaining tasks: 0
[mmcTaskExample] Tasks completed. Elapsed time: 1107 ms 
result: 5050

二、第一轮对话-让AI大模型理解我们的诉求

1、首先告诉AI大模型我的想法和目的,让它充当编程专家,给出初始化代码。
在这里插入图片描述

2、下面是AI给的回复。

  • 【首先,我们需要创建一个核心类MmcTask,它将实现RecursiveTask接口,并实现compute方法,用于执行真正的任务处理方法。】
import java.util.List;
import java.util.concurrent.RecursiveTask;public class MmcTask<T, R> extends RecursiveTask<R> {private List<T> taskSource;private MmcTaskHandler<T, R> taskHandler;private int threshold;private int start;private int end;public MmcTask(List<T> taskSource, MmcTaskHandler<T, R> taskHandler, int threshold, int start, int end) {this.taskSource = taskSource;this.taskHandler = taskHandler;this.threshold = threshold;this.start = start;this.end = end;}@Overrideprotected R compute() {// 当任务数量小于等于阈值时,执行真正的任务处理方法if (end - start <= threshold) {return taskHandler.handle(taskSource.subList(start, end));}// 将任务拆分为两部分,并递归执行int middle = (start + end) / 2;MmcTask<T, R> leftTask = new MmcTask<>(taskSource, taskHandler, threshold, start, middle);MmcTask<T, R> rightTask = new MmcTask<>(taskSource, taskHandler, threshold, middle, end);leftTask.fork();R rightResult = rightTask.compute();R leftResult = leftTask.join();// 合并两个任务的结果return taskHandler.merge(leftResult, rightResult);}
}
  • 【接下来,我们需要创建一个MmcTaskHandler接口,用于处理任务并合并任务结果。】
public interface MmcTaskHandler<T, R> {R handle(List<T> taskSource);R merge(R leftResult, R rightResult);
}
  • 【然后,我们创建一个MmcTaskExecutor类,用于构建任务容器并执行任务。】
import java.util.List;
import java.util.concurrent.ForkJoinPool;public class MmcTaskExecutor<T, R> {private List<T> taskSource;private MmcTaskHandler<T, R> taskHandler;private int threshold;private ForkJoinPool forkJoinPool;private MmcTaskExecutor(Builder<T, R> builder) {this.taskSource = builder.taskSource;this.taskHandler = builder.taskHandler;this.threshold = builder.threshold;this.forkJoinPool = builder.forkJoinPool;}public static <T, R> Builder<T, R> builder() {return new Builder<>();}public R execute() {MmcTask<T, R> mmcTask = new MmcTask<>(taskSource, taskHandler, threshold, 0, taskSource.size());return forkJoinPool.invoke(mmcTask);}public static class Builder<T, R> {private List<T> taskSource;private MmcTaskHandler<T, R> taskHandler;private int threshold = 10;private ForkJoinPool forkJoinPool = new ForkJoinPool();public Builder<T, R> taskSource(List<T> taskSource) {this.taskSource = taskSource;return this;}public Builder<T, R> taskHandler(MmcTaskHandler<T, R> taskHandler) {this.taskHandler = taskHandler;return this;}public Builder<T, R> threshold(int threshold) {this.threshold = threshold;return this;}public Builder<T, R> forkJoinPool(ForkJoinPool forkJoinPool) {this.forkJoinPool = forkJoinPool;return this;}public MmcTaskExecutor<T, R> build() {return new MmcTaskExecutor<>(this);}}
}
  • 【最后,我们编写一个示例,计算从1加到100的结果。】
import java.util.ArrayList;
import java.util.List;public class MmcTaskExample {public static void main(String[] args) {List<Integer> taskSource = new ArrayList<>();for (int i = 1; i <= 100; i++) {taskSource.add(i);}MmcTaskHandler<Integer, Integer> taskHandler = new MmcTaskHandler<Integer, Integer>() {@Overridepublic Integer handle(List<Integer> taskSource) {int sum = 0;for (Integer num : taskSource) {sum += num;}return sum;}@Overridepublic Integer merge(Integer leftResult, Integer rightResult) {return leftResult + rightResult;}};MmcTaskExecutor<Integer, Integer> mmcTaskExecutor = MmcTaskExecutor.<Integer, Integer>builder().taskSource(taskSource).taskHandler(taskHandler).threshold(10).build();Integer result = mmcTaskExecutor.execute();System.out.println(result);  // 输出5050}
}

从AI大模型给出的代码来看,它基本能理解我们的意图,不过也存在一下问题:

  • 我希望任务处理方法和结果处理方法可以分开传入,而AI给出的MmcTaskHandler是合并一起的;
  • 我要求代码需要有注释,但AI实际上并没有给太多注释;

不过问题不大,我们可以通过多轮对话去优化。

二、第二轮对话-优化任务处理方法和结果处理方法

1、MmcTaskHandler应该要拆分,也就是MmcTaskExecutor.builder要支持传入真正处理任务的方法,也要支持传入merge结果的处理方法,因为有些任务可能是没有计算结果的,所以merge结果处理方法可以为空。在这里插入图片描述

2、下面是AI大模型给的回复。

  • 【根据您的要求,我们可以将MmcTaskHandler拆分为两个接口:MmcTaskProcessor用于处理任务,MmcTaskMerger用于合并任务结果。同时,我们修改MmcTaskExecutor.Builder类以支持传入这两个接口。首先,我们创建一个MmcTaskProcessor接口。】
public interface MmcTaskProcessor<T, R> {R process(List<T> taskSource);
}
  • 【接下来,我们创建一个MmcTaskMerger接口。】
public interface MmcTaskMerger<R> {R merge(R leftResult, R rightResult);
}
  • 【然后,我们修改MmcTaskExecutor类。】
import java.util.List;
import java.util.concurrent.ForkJoinPool;public class MmcTaskExecutor<T, R> {private List<T> taskSource;private MmcTaskProcessor<T, R> taskProcessor;private MmcTaskMerger<R> taskMerger;private int threshold;private ForkJoinPool forkJoinPool;private MmcTaskExecutor(Builder<T, R> builder) {this.taskSource = builder.taskSource;this.taskProcessor = builder.taskProcessor;this.taskMerger = builder.taskMerger;this.threshold = builder.threshold;this.forkJoinPool = builder.forkJoinPool;}public static <T, R> Builder<T, R> builder() {return new Builder<>();}public R execute() {MmcTask<T, R> mmcTask = new MmcTask<>(taskSource, taskProcessor, taskMerger, threshold, 0, taskSource.size());return forkJoinPool.invoke(mmcTask);}public static class Builder<T, R> {private List<T> taskSource;private MmcTaskProcessor<T, R> taskProcessor;private MmcTaskMerger<R> taskMerger;private int threshold = 10;private ForkJoinPool forkJoinPool = new ForkJoinPool();public Builder<T, R> taskSource(List<T> taskSource) {this.taskSource = taskSource;return this;}public Builder<T, R> taskProcessor(MmcTaskProcessor<T, R> taskProcessor) {this.taskProcessor = taskProcessor;return this;}public Builder<T, R> taskMerger(MmcTaskMerger<R> taskMerger) {this.taskMerger = taskMerger;return this;}public Builder<T, R> threshold(int threshold) {this.threshold = threshold;return this;}public Builder<T, R> forkJoinPool(ForkJoinPool forkJoinPool) {this.forkJoinPool = forkJoinPool;return this;}public MmcTaskExecutor<T, R> build() {return new MmcTaskExecutor<>(this);}}
}
  • 【最后,我们需要修改MmcTask类以适应这些更改。】
import java.util.List;
import java.util.concurrent.RecursiveTask;public class MmcTask<T, R> extends RecursiveTask<R> {private List<T> taskSource;private MmcTaskProcessor<T, R> taskProcessor;private MmcTaskMerger<R> taskMerger;private int threshold;private int start;private int end;public MmcTask(List<T> taskSource, MmcTaskProcessor<T, R> taskProcessor, MmcTaskMerger<R> taskMerger, int threshold, int start, int end) {this.taskSource = taskSource;this.taskProcessor = taskProcessor;this.taskMerger = taskMerger;this.threshold = threshold;this.start = start;this.end = end;}@Overrideprotected R compute() {if (end - start <= threshold) {return taskProcessor.process(taskSource.subList(start, end));}int middle = (start + end) / 2;MmcTask<T, R> leftTask = new MmcTask<>(taskSource, taskProcessor, taskMerger, threshold, start, middle);MmcTask<T, R> rightTask = new MmcTask<>(taskSource, taskProcessor, taskMerger, threshold, middle, end);leftTask.fork();R rightResult = rightTask.compute();R leftResult = leftTask.join();if (taskMerger != null) {return taskMerger.merge(leftResult, rightResult);} else {return null;}}
}
  • 【计算1到100的最终实例代码。】
import java.util.ArrayList;
import java.util.List;public class MmcTaskExample {public static void main(String[] args) {List<Integer> taskSource = new ArrayList<>();for (int i = 1; i <= 100; i++) {taskSource.add(i);}MmcTaskProcessor<Integer, Integer> taskProcessor = new MmcTaskProcessor<Integer, Integer>() {@Overridepublic Integer process(List<Integer> taskSource) {int sum = 0;for (Integer num : taskSource) {sum += num;}return sum;}};MmcTaskMerger<Integer> taskMerger = new MmcTaskMerger<Integer>() {@Overridepublic Integer merge(Integer leftResult, Integer rightResult) {return leftResult + rightResult;}};MmcTaskExecutor<Integer, Integer> mmcTaskExecutor = MmcTaskExecutor.<Integer, Integer>builder().taskSource(taskSource).taskProcessor(taskProcessor).taskMerger(taskMerger).threshold(10).build();Integer result = mmcTaskExecutor.execute();System.out.println(result);  // 输出5050}
}

下一篇,继续优化这个多线程框架。。。

三、参考文章

  • 《AI大模型编写多线程并发框架(六十一):从零开始搭建框架》
  • 《AI大模型编写多线程并发框架(六十二):限流和并发度优化》
  • 《AI大模型编写多线程并发框架(六十三):监听器优化》
  • 《AI大模型编写多线程并发框架(六十四):发布和应用》

加我加群(备注csdn)一起交流学习!更多干货下载、项目源码和大厂内推等着你

这篇关于AI大模型编写多线程并发框架(六十一):从零开始搭建框架的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1110485

相关文章

一文详解如何在idea中快速搭建一个Spring Boot项目

《一文详解如何在idea中快速搭建一个SpringBoot项目》IntelliJIDEA作为Java开发者的‌首选IDE‌,深度集成SpringBoot支持,可一键生成项目骨架、智能配置依赖,这篇文... 目录前言1、创建项目名称2、勾选需要的依赖3、在setting中检查maven4、编写数据源5、开启热

python编写朋克风格的天气查询程序

《python编写朋克风格的天气查询程序》这篇文章主要为大家详细介绍了一个基于Python的桌面应用程序,使用了tkinter库来创建图形用户界面并通过requests库调用Open-MeteoAPI... 目录工具介绍工具使用说明python脚本内容如何运行脚本工具介绍这个天气查询工具是一个基于 Pyt

如何搭建并配置HTTPD文件服务及访问权限控制

《如何搭建并配置HTTPD文件服务及访问权限控制》:本文主要介绍如何搭建并配置HTTPD文件服务及访问权限控制的问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、安装HTTPD服务二、HTTPD服务目录结构三、配置修改四、服务启动五、基于用户访问权限控制六、

MyBatis编写嵌套子查询的动态SQL实践详解

《MyBatis编写嵌套子查询的动态SQL实践详解》在Java生态中,MyBatis作为一款优秀的ORM框架,广泛应用于数据库操作,本文将深入探讨如何在MyBatis中编写嵌套子查询的动态SQL,并结... 目录一、Myhttp://www.chinasem.cnBATis动态SQL的核心优势1. 灵活性与可

pytest+allure环境搭建+自动化实践过程

《pytest+allure环境搭建+自动化实践过程》:本文主要介绍pytest+allure环境搭建+自动化实践过程,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐... 目录一、pytest下载安装1.1、安装pytest1.2、检测是否安装成功二、allure下载安装2.

使用vscode搭建pywebview集成vue项目实践

《使用vscode搭建pywebview集成vue项目实践》:本文主要介绍使用vscode搭建pywebview集成vue项目实践,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地... 目录环境准备项目源码下载项目说明调试与生成可执行文件核心代码说明总结本节我们使用pythonpywebv

详解如何使用Python从零开始构建文本统计模型

《详解如何使用Python从零开始构建文本统计模型》在自然语言处理领域,词汇表构建是文本预处理的关键环节,本文通过Python代码实践,演示如何从原始文本中提取多尺度特征,并通过动态调整机制构建更精确... 目录一、项目背景与核心思想二、核心代码解析1. 数据加载与预处理2. 多尺度字符统计3. 统计结果可

Mybatis嵌套子查询动态SQL编写实践

《Mybatis嵌套子查询动态SQL编写实践》:本文主要介绍Mybatis嵌套子查询动态SQL编写方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录前言一、实体类1、主类2、子类二、Mapper三、XML四、详解总结前言MyBATis的xml文件编写动态SQL

SpringBoot整合Sa-Token实现RBAC权限模型的过程解析

《SpringBoot整合Sa-Token实现RBAC权限模型的过程解析》:本文主要介绍SpringBoot整合Sa-Token实现RBAC权限模型的过程解析,本文给大家介绍的非常详细,对大家的学... 目录前言一、基础概念1.1 RBAC模型核心概念1.2 Sa-Token核心功能1.3 环境准备二、表结

python多线程并发测试过程

《python多线程并发测试过程》:本文主要介绍python多线程并发测试过程,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、并发与并行?二、同步与异步的概念?三、线程与进程的区别?需求1:多线程执行不同任务需求2:多线程执行相同任务总结一、并发与并行?1、