inflight 守恒算法的实现和仿真

2024-08-26 23:28

本文主要是介绍inflight 守恒算法的实现和仿真,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

前面介绍过,只要某条流的 inflt 在 bdp 之外再增加一个相等的余量 I,即 inflt = bdp + I,比如 I = 2,I = 3,…,就一定会收敛到公平,且不会占据过多 buffer,因此 rtt 不会膨胀,I 的大小影响收敛速度,I 越大,收敛越快,但 buffer 占据也更多,I 越小,收敛越慢,但 buffer 占据更少,所以效率和公平的 tradeoff 在此体现。

记住这个简洁的结论,然后将 I 调整为动态的负反馈,就是一个新算法,该算法占据 “一定量” 的 buffer 而不是像 aimd 那样抖动,占据 buffer 的大小由 I 的均值决定。平稳压倒一切,抖动是低效的根源,始终占据一定量的 buffer 是可以接受的,通过调参可以将这个 “一定量” 压到尽可能小。

简单用 c 实现了一版 inflight 守恒算法,非常简洁:

#include <stdio.h>
#include <stdlib.h>#define BW_FILTER_LEN 10double RTPROP = 1;
double C = 100.0; // bottleneck_link_bw
double I = 0.0;struct es {double E;double bw;
};struct ebest_flow {int index;               /* flow identifier */int status;double I;double inflt;double min_rtt;double srtt;double sending_bw;       /* current receive bw */double receive_bw;       /* current receive bw */struct es max_e;           /* current estimated bw */struct es e_samples[BW_FILTER_LEN];int phase_offset;
};struct ebest_flow f1;
struct ebest_flow f2;
struct ebest_flow f3;
struct ebest_flow f4;int t = 0;
int bw_filter_index = 0;#define max(a, b) (a > b) ? (a) : (b)
#define min(a, b) (a < b) ? (a) : (b)void ebest_set_max_e(struct ebest_flow *f)
{int i = 0;f->max_e.bw = 0;for (i = 0; i < BW_FILTER_LEN; i++) {f->max_e.E = max(f->max_e.E, f->e_samples[i].E);f->max_e.bw = f->e_samples[i].bw;}f->I = 0.7 * f->I + 0.3 * 40 * f->min_rtt * f->max_e.bw/(20 * f->min_rtt + f->max_e.bw * f->srtt) * (f->min_rtt / f->srtt);
}void ebest_update_maxbw_minrtt(struct ebest_flow *f, double rtt)
{rtt = (rtt > RTPROP)?:RTPROP;f->e_samples[bw_filter_index].E = f->receive_bw / rtt;f->e_samples[bw_filter_index].bw = f->receive_bw;ebest_set_max_e(f);if (rtt <= f->min_rtt) {f->srtt = f->min_rtt = rtt;} else {f->srtt = rtt;}
}void ebest_update_sending_bw(struct ebest_flow *f)
{f->inflt = f->max_e.bw * f->min_rtt + f->I;printf("#### f: %d  %.3f\n", f->index, f->I);f->sending_bw = f->max_e.bw;printf("flow %d phase: %d max_bw: %.3f sending_bw: %.3f\n",f->index, 0, f->max_e.bw, f->sending_bw);
}void simulate_one_phase(int i)
{double rtt;//if (i == 1500)//  C = 160;//if (i == 2500)//  C = 40;ebest_update_sending_bw(&f1);ebest_update_sending_bw(&f2);ebest_update_sending_bw(&f3);ebest_update_sending_bw(&f4);printf("t= %04d sending: f1: %.3f f2: %.3f f3: %.3f f4: %.3f\n",t, f1.sending_bw, f2.sending_bw, f3.sending_bw, f4.sending_bw);double total_I = 0;if (i < 1000) {rtt = (f1.inflt + f2.inflt + f3.inflt) / C;f1.receive_bw = C * f1.inflt / (f1.inflt + f2.inflt + f3.inflt);f2.receive_bw = C * f2.inflt / (f1.inflt + f2.inflt + f3.inflt);f3.receive_bw = C * f3.inflt / (f1.inflt + f2.inflt + f3.inflt);f4.receive_bw = 0;f4.max_e.bw = 0;f4.inflt = 0;if (i == 999) {f4.max_e.bw = 0.1 * C;f4.inflt = 0.1 * C * RTPROP + I;f4.I = I;f4.receive_bw = 0.1 * C;printf("@@@@### time: %d  f1: %.3f  f2: %.3f  f3: %.3f  f4: %.3f \n", t, f1.inflt, f2.inflt, f3.inflt, f4.inflt);}total_I = f1.I + f2.I + f3.I;printf("t= %04d  remain: f1: %.3f f2: %.3f f3: %.3f f4: %.3f\n",t, f1.I, f2.I, f3.I, total_I);} else if (i >= 1000 && i < 2000) {rtt = (f1.inflt + f2.inflt + f3.inflt + f4.inflt) / C;f1.receive_bw = C * f1.inflt / (f1.inflt + f2.inflt + f3.inflt + f4.inflt);f2.receive_bw = C * f2.inflt / (f1.inflt + f2.inflt + f3.inflt + f4.inflt);f3.receive_bw = C * f3.inflt / (f1.inflt + f2.inflt + f3.inflt + f4.inflt);f4.receive_bw = C * f4.inflt / (f1.inflt + f2.inflt + f3.inflt + f4.inflt);if (i < 1100) {printf("@@@@### time: %d  f1: %.3f  f2: %.3f  f3: %.3f  f4: %.3f \n", t, f1.inflt, f2.inflt, f3.inflt, f4.inflt);}total_I = f1.I + f2.I + f3.I + f4.I;printf("t= %04d  remain: f1: %.3f f2: %.3f f3: %.3f f4: %.3f\n",t, f1.I, f2.I, f3.I, total_I);} else {rtt = (f1.inflt + f2.inflt) / C;f1.receive_bw = C * f1.inflt / (f1.inflt + f2.inflt);f2.receive_bw = C * f2.inflt / (f1.inflt + f2.inflt);f3.receive_bw = 0;f4.receive_bw = 0;f3.max_e.bw = 0;f4.max_e.bw = 0;f3.inflt = 0;f4.inflt = 0;total_I = f1.I + f2.I;printf("t= %04d  remain: f1: %.3f f2: %.3f f3: %.3f f4: %.3f\n",t, f1.I, f2.I, f3.I, total_I);}if (rtt < RTPROP)rtt = RTPROP;printf("t= %04d receive: f1: %.3f f2: %.3f f3: %.3f f4: %.3f\n",t, f1.receive_bw, f2.receive_bw, f3.receive_bw, f4.receive_bw);ebest_update_maxbw_minrtt(&f1, rtt);ebest_update_maxbw_minrtt(&f2, rtt);ebest_update_maxbw_minrtt(&f3, rtt);ebest_update_maxbw_minrtt(&f4, rtt);printf("t= %04d  max_bw: f1: %.3f f2: %.3f f3: %.3f f4: %.3f\n",t, f1.max_e.bw, f2.max_e.bw, f3.max_e.bw, f4.max_e.bw);printf("t= %04d  inflt: f1: %.3f f2: %.3f f3: %.3f f4: %.3f\n",t, f1.inflt, f2.inflt, f3.inflt, f4.inflt);printf("t= %04d  min_rtt: f1: %.3f f2: %.3f f3: %.3f f4: %.3f\n",t, rtt, f2.min_rtt, f3.min_rtt, f4.min_rtt);t++;bw_filter_index = (bw_filter_index + 1) % BW_FILTER_LEN;
}int main(int argc, char *argv[])
{int i = 0;if (argc > 1) I = atof(argv[1]);f1.index = 1;f2.index = 2;f3.index = 3;f4.index = 4;f1.max_e.bw = 0.9 * C;f2.max_e.bw = 0.3 * C;f3.max_e.bw = 0.6 * C;f1.max_e.E = f1.max_e.bw / RTPROP;f2.max_e.E = f2.max_e.bw / RTPROP;f3.max_e.E = f3.max_e.bw / RTPROP;f1.I = I;f2.I = I;f3.I = I;f4.I = 0;f1.srtt = f1.min_rtt = RTPROP;f2.srtt = f2.min_rtt = RTPROP;f3.srtt = f3.min_rtt = RTPROP;f4.srtt = f4.min_rtt = RTPROP;f1.inflt = 0.1 * C * RTPROP;f2.inflt = 0.3 * C * RTPROP;f3.inflt = 0.6 * C * RTPROP;f1.e_samples[BW_FILTER_LEN - 1] = f1.max_e;f2.e_samples[BW_FILTER_LEN - 1] = f2.max_e;f3.e_samples[BW_FILTER_LEN - 1] = f3.max_e;for (i = 0; i < 3000; i++) {simulate_one_phase(i);}return 0;
}

算法和建模分别参见 inflight 守恒背后的哲学 与 inflight 守恒数学建模.

这个算法的核心只需要设置 remain 余量,剩下的跟踪 E_best = max(bw / delay) 即可,因此 remain 一定是个负反馈方程:

R e m a i n = α ⋅ R T T m i n ⋅ B W w h e n _ E _ b e s t β ⋅ R T T m i n + B W w h e n _ E _ b e s t ⋅ R T T s m o o t h ⋅ R T T m i n R T T s m o o t h Remain=\dfrac{\alpha\cdot RTT_{min}\cdot BW_{when\_E\_best}}{\beta \cdot RTT_{min}+BW_{when\_E\_best}\cdot RTT_{smooth}}\cdot \dfrac{RTT_{min}}{RTT_{smooth}} Remain=βRTTmin+BWwhen_E_bestRTTsmoothαRTTminBWwhen_E_bestRTTsmoothRTTmin

效果如下:
在这里插入图片描述

明显有负反馈效果,但还是需要增加自由度,继续调参,我需要的效果是无论多少条流,所有流的 Remain 之和在一个有限范围内。

而 inflt 收敛效果如下:
在这里插入图片描述

rtt 平稳且并未膨胀:
在这里插入图片描述

浙江温州皮鞋湿,下雨进水不会胖。

这篇关于inflight 守恒算法的实现和仿真的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1109981

相关文章

SpringBoot集成redisson实现延时队列教程

《SpringBoot集成redisson实现延时队列教程》文章介绍了使用Redisson实现延迟队列的完整步骤,包括依赖导入、Redis配置、工具类封装、业务枚举定义、执行器实现、Bean创建、消费... 目录1、先给项目导入Redisson依赖2、配置redis3、创建 RedissonConfig 配

Python的Darts库实现时间序列预测

《Python的Darts库实现时间序列预测》Darts一个集统计、机器学习与深度学习模型于一体的Python时间序列预测库,本文主要介绍了Python的Darts库实现时间序列预测,感兴趣的可以了解... 目录目录一、什么是 Darts?二、安装与基本配置安装 Darts导入基础模块三、时间序列数据结构与

Python使用FastAPI实现大文件分片上传与断点续传功能

《Python使用FastAPI实现大文件分片上传与断点续传功能》大文件直传常遇到超时、网络抖动失败、失败后只能重传的问题,分片上传+断点续传可以把大文件拆成若干小块逐个上传,并在中断后从已完成分片继... 目录一、接口设计二、服务端实现(FastAPI)2.1 运行环境2.2 目录结构建议2.3 serv

C#实现千万数据秒级导入的代码

《C#实现千万数据秒级导入的代码》在实际开发中excel导入很常见,现代社会中很容易遇到大数据处理业务,所以本文我就给大家分享一下千万数据秒级导入怎么实现,文中有详细的代码示例供大家参考,需要的朋友可... 目录前言一、数据存储二、处理逻辑优化前代码处理逻辑优化后的代码总结前言在实际开发中excel导入很

SpringBoot+RustFS 实现文件切片极速上传的实例代码

《SpringBoot+RustFS实现文件切片极速上传的实例代码》本文介绍利用SpringBoot和RustFS构建高性能文件切片上传系统,实现大文件秒传、断点续传和分片上传等功能,具有一定的参考... 目录一、为什么选择 RustFS + SpringBoot?二、环境准备与部署2.1 安装 RustF

Nginx部署HTTP/3的实现步骤

《Nginx部署HTTP/3的实现步骤》本文介绍了在Nginx中部署HTTP/3的详细步骤,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学... 目录前提条件第一步:安装必要的依赖库第二步:获取并构建 BoringSSL第三步:获取 Nginx

MyBatis Plus实现时间字段自动填充的完整方案

《MyBatisPlus实现时间字段自动填充的完整方案》在日常开发中,我们经常需要记录数据的创建时间和更新时间,传统的做法是在每次插入或更新操作时手动设置这些时间字段,这种方式不仅繁琐,还容易遗漏,... 目录前言解决目标技术栈实现步骤1. 实体类注解配置2. 创建元数据处理器3. 服务层代码优化填充机制详

Python实现Excel批量样式修改器(附完整代码)

《Python实现Excel批量样式修改器(附完整代码)》这篇文章主要为大家详细介绍了如何使用Python实现一个Excel批量样式修改器,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一... 目录前言功能特性核心功能界面特性系统要求安装说明使用指南基本操作流程高级功能技术实现核心技术栈关键函

Java实现字节字符转bcd编码

《Java实现字节字符转bcd编码》BCD是一种将十进制数字编码为二进制的表示方式,常用于数字显示和存储,本文将介绍如何在Java中实现字节字符转BCD码的过程,需要的小伙伴可以了解下... 目录前言BCD码是什么Java实现字节转bcd编码方法补充总结前言BCD码(Binary-Coded Decima

SpringBoot全局域名替换的实现

《SpringBoot全局域名替换的实现》本文主要介绍了SpringBoot全局域名替换的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一... 目录 项目结构⚙️ 配置文件application.yml️ 配置类AppProperties.Ja