inflight 守恒算法的实现和仿真

2024-08-26 23:28

本文主要是介绍inflight 守恒算法的实现和仿真,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

前面介绍过,只要某条流的 inflt 在 bdp 之外再增加一个相等的余量 I,即 inflt = bdp + I,比如 I = 2,I = 3,…,就一定会收敛到公平,且不会占据过多 buffer,因此 rtt 不会膨胀,I 的大小影响收敛速度,I 越大,收敛越快,但 buffer 占据也更多,I 越小,收敛越慢,但 buffer 占据更少,所以效率和公平的 tradeoff 在此体现。

记住这个简洁的结论,然后将 I 调整为动态的负反馈,就是一个新算法,该算法占据 “一定量” 的 buffer 而不是像 aimd 那样抖动,占据 buffer 的大小由 I 的均值决定。平稳压倒一切,抖动是低效的根源,始终占据一定量的 buffer 是可以接受的,通过调参可以将这个 “一定量” 压到尽可能小。

简单用 c 实现了一版 inflight 守恒算法,非常简洁:

#include <stdio.h>
#include <stdlib.h>#define BW_FILTER_LEN 10double RTPROP = 1;
double C = 100.0; // bottleneck_link_bw
double I = 0.0;struct es {double E;double bw;
};struct ebest_flow {int index;               /* flow identifier */int status;double I;double inflt;double min_rtt;double srtt;double sending_bw;       /* current receive bw */double receive_bw;       /* current receive bw */struct es max_e;           /* current estimated bw */struct es e_samples[BW_FILTER_LEN];int phase_offset;
};struct ebest_flow f1;
struct ebest_flow f2;
struct ebest_flow f3;
struct ebest_flow f4;int t = 0;
int bw_filter_index = 0;#define max(a, b) (a > b) ? (a) : (b)
#define min(a, b) (a < b) ? (a) : (b)void ebest_set_max_e(struct ebest_flow *f)
{int i = 0;f->max_e.bw = 0;for (i = 0; i < BW_FILTER_LEN; i++) {f->max_e.E = max(f->max_e.E, f->e_samples[i].E);f->max_e.bw = f->e_samples[i].bw;}f->I = 0.7 * f->I + 0.3 * 40 * f->min_rtt * f->max_e.bw/(20 * f->min_rtt + f->max_e.bw * f->srtt) * (f->min_rtt / f->srtt);
}void ebest_update_maxbw_minrtt(struct ebest_flow *f, double rtt)
{rtt = (rtt > RTPROP)?:RTPROP;f->e_samples[bw_filter_index].E = f->receive_bw / rtt;f->e_samples[bw_filter_index].bw = f->receive_bw;ebest_set_max_e(f);if (rtt <= f->min_rtt) {f->srtt = f->min_rtt = rtt;} else {f->srtt = rtt;}
}void ebest_update_sending_bw(struct ebest_flow *f)
{f->inflt = f->max_e.bw * f->min_rtt + f->I;printf("#### f: %d  %.3f\n", f->index, f->I);f->sending_bw = f->max_e.bw;printf("flow %d phase: %d max_bw: %.3f sending_bw: %.3f\n",f->index, 0, f->max_e.bw, f->sending_bw);
}void simulate_one_phase(int i)
{double rtt;//if (i == 1500)//  C = 160;//if (i == 2500)//  C = 40;ebest_update_sending_bw(&f1);ebest_update_sending_bw(&f2);ebest_update_sending_bw(&f3);ebest_update_sending_bw(&f4);printf("t= %04d sending: f1: %.3f f2: %.3f f3: %.3f f4: %.3f\n",t, f1.sending_bw, f2.sending_bw, f3.sending_bw, f4.sending_bw);double total_I = 0;if (i < 1000) {rtt = (f1.inflt + f2.inflt + f3.inflt) / C;f1.receive_bw = C * f1.inflt / (f1.inflt + f2.inflt + f3.inflt);f2.receive_bw = C * f2.inflt / (f1.inflt + f2.inflt + f3.inflt);f3.receive_bw = C * f3.inflt / (f1.inflt + f2.inflt + f3.inflt);f4.receive_bw = 0;f4.max_e.bw = 0;f4.inflt = 0;if (i == 999) {f4.max_e.bw = 0.1 * C;f4.inflt = 0.1 * C * RTPROP + I;f4.I = I;f4.receive_bw = 0.1 * C;printf("@@@@### time: %d  f1: %.3f  f2: %.3f  f3: %.3f  f4: %.3f \n", t, f1.inflt, f2.inflt, f3.inflt, f4.inflt);}total_I = f1.I + f2.I + f3.I;printf("t= %04d  remain: f1: %.3f f2: %.3f f3: %.3f f4: %.3f\n",t, f1.I, f2.I, f3.I, total_I);} else if (i >= 1000 && i < 2000) {rtt = (f1.inflt + f2.inflt + f3.inflt + f4.inflt) / C;f1.receive_bw = C * f1.inflt / (f1.inflt + f2.inflt + f3.inflt + f4.inflt);f2.receive_bw = C * f2.inflt / (f1.inflt + f2.inflt + f3.inflt + f4.inflt);f3.receive_bw = C * f3.inflt / (f1.inflt + f2.inflt + f3.inflt + f4.inflt);f4.receive_bw = C * f4.inflt / (f1.inflt + f2.inflt + f3.inflt + f4.inflt);if (i < 1100) {printf("@@@@### time: %d  f1: %.3f  f2: %.3f  f3: %.3f  f4: %.3f \n", t, f1.inflt, f2.inflt, f3.inflt, f4.inflt);}total_I = f1.I + f2.I + f3.I + f4.I;printf("t= %04d  remain: f1: %.3f f2: %.3f f3: %.3f f4: %.3f\n",t, f1.I, f2.I, f3.I, total_I);} else {rtt = (f1.inflt + f2.inflt) / C;f1.receive_bw = C * f1.inflt / (f1.inflt + f2.inflt);f2.receive_bw = C * f2.inflt / (f1.inflt + f2.inflt);f3.receive_bw = 0;f4.receive_bw = 0;f3.max_e.bw = 0;f4.max_e.bw = 0;f3.inflt = 0;f4.inflt = 0;total_I = f1.I + f2.I;printf("t= %04d  remain: f1: %.3f f2: %.3f f3: %.3f f4: %.3f\n",t, f1.I, f2.I, f3.I, total_I);}if (rtt < RTPROP)rtt = RTPROP;printf("t= %04d receive: f1: %.3f f2: %.3f f3: %.3f f4: %.3f\n",t, f1.receive_bw, f2.receive_bw, f3.receive_bw, f4.receive_bw);ebest_update_maxbw_minrtt(&f1, rtt);ebest_update_maxbw_minrtt(&f2, rtt);ebest_update_maxbw_minrtt(&f3, rtt);ebest_update_maxbw_minrtt(&f4, rtt);printf("t= %04d  max_bw: f1: %.3f f2: %.3f f3: %.3f f4: %.3f\n",t, f1.max_e.bw, f2.max_e.bw, f3.max_e.bw, f4.max_e.bw);printf("t= %04d  inflt: f1: %.3f f2: %.3f f3: %.3f f4: %.3f\n",t, f1.inflt, f2.inflt, f3.inflt, f4.inflt);printf("t= %04d  min_rtt: f1: %.3f f2: %.3f f3: %.3f f4: %.3f\n",t, rtt, f2.min_rtt, f3.min_rtt, f4.min_rtt);t++;bw_filter_index = (bw_filter_index + 1) % BW_FILTER_LEN;
}int main(int argc, char *argv[])
{int i = 0;if (argc > 1) I = atof(argv[1]);f1.index = 1;f2.index = 2;f3.index = 3;f4.index = 4;f1.max_e.bw = 0.9 * C;f2.max_e.bw = 0.3 * C;f3.max_e.bw = 0.6 * C;f1.max_e.E = f1.max_e.bw / RTPROP;f2.max_e.E = f2.max_e.bw / RTPROP;f3.max_e.E = f3.max_e.bw / RTPROP;f1.I = I;f2.I = I;f3.I = I;f4.I = 0;f1.srtt = f1.min_rtt = RTPROP;f2.srtt = f2.min_rtt = RTPROP;f3.srtt = f3.min_rtt = RTPROP;f4.srtt = f4.min_rtt = RTPROP;f1.inflt = 0.1 * C * RTPROP;f2.inflt = 0.3 * C * RTPROP;f3.inflt = 0.6 * C * RTPROP;f1.e_samples[BW_FILTER_LEN - 1] = f1.max_e;f2.e_samples[BW_FILTER_LEN - 1] = f2.max_e;f3.e_samples[BW_FILTER_LEN - 1] = f3.max_e;for (i = 0; i < 3000; i++) {simulate_one_phase(i);}return 0;
}

算法和建模分别参见 inflight 守恒背后的哲学 与 inflight 守恒数学建模.

这个算法的核心只需要设置 remain 余量,剩下的跟踪 E_best = max(bw / delay) 即可,因此 remain 一定是个负反馈方程:

R e m a i n = α ⋅ R T T m i n ⋅ B W w h e n _ E _ b e s t β ⋅ R T T m i n + B W w h e n _ E _ b e s t ⋅ R T T s m o o t h ⋅ R T T m i n R T T s m o o t h Remain=\dfrac{\alpha\cdot RTT_{min}\cdot BW_{when\_E\_best}}{\beta \cdot RTT_{min}+BW_{when\_E\_best}\cdot RTT_{smooth}}\cdot \dfrac{RTT_{min}}{RTT_{smooth}} Remain=βRTTmin+BWwhen_E_bestRTTsmoothαRTTminBWwhen_E_bestRTTsmoothRTTmin

效果如下:
在这里插入图片描述

明显有负反馈效果,但还是需要增加自由度,继续调参,我需要的效果是无论多少条流,所有流的 Remain 之和在一个有限范围内。

而 inflt 收敛效果如下:
在这里插入图片描述

rtt 平稳且并未膨胀:
在这里插入图片描述

浙江温州皮鞋湿,下雨进水不会胖。

这篇关于inflight 守恒算法的实现和仿真的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1109981

相关文章

C++中零拷贝的多种实现方式

《C++中零拷贝的多种实现方式》本文主要介绍了C++中零拷贝的实现示例,旨在在减少数据在内存中的不必要复制,从而提高程序性能、降低内存使用并减少CPU消耗,零拷贝技术通过多种方式实现,下面就来了解一下... 目录一、C++中零拷贝技术的核心概念二、std::string_view 简介三、std::stri

C++高效内存池实现减少动态分配开销的解决方案

《C++高效内存池实现减少动态分配开销的解决方案》C++动态内存分配存在系统调用开销、碎片化和锁竞争等性能问题,内存池通过预分配、分块管理和缓存复用解决这些问题,下面就来了解一下... 目录一、C++内存分配的性能挑战二、内存池技术的核心原理三、主流内存池实现:TCMalloc与Jemalloc1. TCM

OpenCV实现实时颜色检测的示例

《OpenCV实现实时颜色检测的示例》本文主要介绍了OpenCV实现实时颜色检测的示例,通过HSV色彩空间转换和色调范围判断实现红黄绿蓝颜色检测,包含视频捕捉、区域标记、颜色分析等功能,具有一定的参考... 目录一、引言二、系统概述三、代码解析1. 导入库2. 颜色识别函数3. 主程序循环四、HSV色彩空间

Python实现精准提取 PDF中的文本,表格与图片

《Python实现精准提取PDF中的文本,表格与图片》在实际的系统开发中,处理PDF文件不仅限于读取整页文本,还有提取文档中的表格数据,图片或特定区域的内容,下面我们来看看如何使用Python实... 目录安装 python 库提取 PDF 文本内容:获取整页文本与指定区域内容获取页面上的所有文本内容获取

基于Python实现一个Windows Tree命令工具

《基于Python实现一个WindowsTree命令工具》今天想要在Windows平台的CMD命令终端窗口中使用像Linux下的tree命令,打印一下目录结构层级树,然而还真有tree命令,但是发现... 目录引言实现代码使用说明可用选项示例用法功能特点添加到环境变量方法一:创建批处理文件并添加到PATH1

Java使用HttpClient实现图片下载与本地保存功能

《Java使用HttpClient实现图片下载与本地保存功能》在当今数字化时代,网络资源的获取与处理已成为软件开发中的常见需求,其中,图片作为网络上最常见的资源之一,其下载与保存功能在许多应用场景中都... 目录引言一、Apache HttpClient简介二、技术栈与环境准备三、实现图片下载与保存功能1.

canal实现mysql数据同步的详细过程

《canal实现mysql数据同步的详细过程》:本文主要介绍canal实现mysql数据同步的详细过程,本文通过实例图文相结合给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的... 目录1、canal下载2、mysql同步用户创建和授权3、canal admin安装和启动4、canal

Nexus安装和启动的实现教程

《Nexus安装和启动的实现教程》:本文主要介绍Nexus安装和启动的实现教程,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、Nexus下载二、Nexus安装和启动三、关闭Nexus总结一、Nexus下载官方下载链接:DownloadWindows系统根

SpringBoot集成LiteFlow实现轻量级工作流引擎的详细过程

《SpringBoot集成LiteFlow实现轻量级工作流引擎的详细过程》LiteFlow是一款专注于逻辑驱动流程编排的轻量级框架,它以组件化方式快速构建和执行业务流程,有效解耦复杂业务逻辑,下面给大... 目录一、基础概念1.1 组件(Component)1.2 规则(Rule)1.3 上下文(Conte

MySQL 横向衍生表(Lateral Derived Tables)的实现

《MySQL横向衍生表(LateralDerivedTables)的实现》横向衍生表适用于在需要通过子查询获取中间结果集的场景,相对于普通衍生表,横向衍生表可以引用在其之前出现过的表名,本文就来... 目录一、横向衍生表用法示例1.1 用法示例1.2 使用建议前面我们介绍过mysql中的衍生表(From子句