inflight 守恒算法的实现和仿真

2024-08-26 23:28

本文主要是介绍inflight 守恒算法的实现和仿真,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

前面介绍过,只要某条流的 inflt 在 bdp 之外再增加一个相等的余量 I,即 inflt = bdp + I,比如 I = 2,I = 3,…,就一定会收敛到公平,且不会占据过多 buffer,因此 rtt 不会膨胀,I 的大小影响收敛速度,I 越大,收敛越快,但 buffer 占据也更多,I 越小,收敛越慢,但 buffer 占据更少,所以效率和公平的 tradeoff 在此体现。

记住这个简洁的结论,然后将 I 调整为动态的负反馈,就是一个新算法,该算法占据 “一定量” 的 buffer 而不是像 aimd 那样抖动,占据 buffer 的大小由 I 的均值决定。平稳压倒一切,抖动是低效的根源,始终占据一定量的 buffer 是可以接受的,通过调参可以将这个 “一定量” 压到尽可能小。

简单用 c 实现了一版 inflight 守恒算法,非常简洁:

#include <stdio.h>
#include <stdlib.h>#define BW_FILTER_LEN 10double RTPROP = 1;
double C = 100.0; // bottleneck_link_bw
double I = 0.0;struct es {double E;double bw;
};struct ebest_flow {int index;               /* flow identifier */int status;double I;double inflt;double min_rtt;double srtt;double sending_bw;       /* current receive bw */double receive_bw;       /* current receive bw */struct es max_e;           /* current estimated bw */struct es e_samples[BW_FILTER_LEN];int phase_offset;
};struct ebest_flow f1;
struct ebest_flow f2;
struct ebest_flow f3;
struct ebest_flow f4;int t = 0;
int bw_filter_index = 0;#define max(a, b) (a > b) ? (a) : (b)
#define min(a, b) (a < b) ? (a) : (b)void ebest_set_max_e(struct ebest_flow *f)
{int i = 0;f->max_e.bw = 0;for (i = 0; i < BW_FILTER_LEN; i++) {f->max_e.E = max(f->max_e.E, f->e_samples[i].E);f->max_e.bw = f->e_samples[i].bw;}f->I = 0.7 * f->I + 0.3 * 40 * f->min_rtt * f->max_e.bw/(20 * f->min_rtt + f->max_e.bw * f->srtt) * (f->min_rtt / f->srtt);
}void ebest_update_maxbw_minrtt(struct ebest_flow *f, double rtt)
{rtt = (rtt > RTPROP)?:RTPROP;f->e_samples[bw_filter_index].E = f->receive_bw / rtt;f->e_samples[bw_filter_index].bw = f->receive_bw;ebest_set_max_e(f);if (rtt <= f->min_rtt) {f->srtt = f->min_rtt = rtt;} else {f->srtt = rtt;}
}void ebest_update_sending_bw(struct ebest_flow *f)
{f->inflt = f->max_e.bw * f->min_rtt + f->I;printf("#### f: %d  %.3f\n", f->index, f->I);f->sending_bw = f->max_e.bw;printf("flow %d phase: %d max_bw: %.3f sending_bw: %.3f\n",f->index, 0, f->max_e.bw, f->sending_bw);
}void simulate_one_phase(int i)
{double rtt;//if (i == 1500)//  C = 160;//if (i == 2500)//  C = 40;ebest_update_sending_bw(&f1);ebest_update_sending_bw(&f2);ebest_update_sending_bw(&f3);ebest_update_sending_bw(&f4);printf("t= %04d sending: f1: %.3f f2: %.3f f3: %.3f f4: %.3f\n",t, f1.sending_bw, f2.sending_bw, f3.sending_bw, f4.sending_bw);double total_I = 0;if (i < 1000) {rtt = (f1.inflt + f2.inflt + f3.inflt) / C;f1.receive_bw = C * f1.inflt / (f1.inflt + f2.inflt + f3.inflt);f2.receive_bw = C * f2.inflt / (f1.inflt + f2.inflt + f3.inflt);f3.receive_bw = C * f3.inflt / (f1.inflt + f2.inflt + f3.inflt);f4.receive_bw = 0;f4.max_e.bw = 0;f4.inflt = 0;if (i == 999) {f4.max_e.bw = 0.1 * C;f4.inflt = 0.1 * C * RTPROP + I;f4.I = I;f4.receive_bw = 0.1 * C;printf("@@@@### time: %d  f1: %.3f  f2: %.3f  f3: %.3f  f4: %.3f \n", t, f1.inflt, f2.inflt, f3.inflt, f4.inflt);}total_I = f1.I + f2.I + f3.I;printf("t= %04d  remain: f1: %.3f f2: %.3f f3: %.3f f4: %.3f\n",t, f1.I, f2.I, f3.I, total_I);} else if (i >= 1000 && i < 2000) {rtt = (f1.inflt + f2.inflt + f3.inflt + f4.inflt) / C;f1.receive_bw = C * f1.inflt / (f1.inflt + f2.inflt + f3.inflt + f4.inflt);f2.receive_bw = C * f2.inflt / (f1.inflt + f2.inflt + f3.inflt + f4.inflt);f3.receive_bw = C * f3.inflt / (f1.inflt + f2.inflt + f3.inflt + f4.inflt);f4.receive_bw = C * f4.inflt / (f1.inflt + f2.inflt + f3.inflt + f4.inflt);if (i < 1100) {printf("@@@@### time: %d  f1: %.3f  f2: %.3f  f3: %.3f  f4: %.3f \n", t, f1.inflt, f2.inflt, f3.inflt, f4.inflt);}total_I = f1.I + f2.I + f3.I + f4.I;printf("t= %04d  remain: f1: %.3f f2: %.3f f3: %.3f f4: %.3f\n",t, f1.I, f2.I, f3.I, total_I);} else {rtt = (f1.inflt + f2.inflt) / C;f1.receive_bw = C * f1.inflt / (f1.inflt + f2.inflt);f2.receive_bw = C * f2.inflt / (f1.inflt + f2.inflt);f3.receive_bw = 0;f4.receive_bw = 0;f3.max_e.bw = 0;f4.max_e.bw = 0;f3.inflt = 0;f4.inflt = 0;total_I = f1.I + f2.I;printf("t= %04d  remain: f1: %.3f f2: %.3f f3: %.3f f4: %.3f\n",t, f1.I, f2.I, f3.I, total_I);}if (rtt < RTPROP)rtt = RTPROP;printf("t= %04d receive: f1: %.3f f2: %.3f f3: %.3f f4: %.3f\n",t, f1.receive_bw, f2.receive_bw, f3.receive_bw, f4.receive_bw);ebest_update_maxbw_minrtt(&f1, rtt);ebest_update_maxbw_minrtt(&f2, rtt);ebest_update_maxbw_minrtt(&f3, rtt);ebest_update_maxbw_minrtt(&f4, rtt);printf("t= %04d  max_bw: f1: %.3f f2: %.3f f3: %.3f f4: %.3f\n",t, f1.max_e.bw, f2.max_e.bw, f3.max_e.bw, f4.max_e.bw);printf("t= %04d  inflt: f1: %.3f f2: %.3f f3: %.3f f4: %.3f\n",t, f1.inflt, f2.inflt, f3.inflt, f4.inflt);printf("t= %04d  min_rtt: f1: %.3f f2: %.3f f3: %.3f f4: %.3f\n",t, rtt, f2.min_rtt, f3.min_rtt, f4.min_rtt);t++;bw_filter_index = (bw_filter_index + 1) % BW_FILTER_LEN;
}int main(int argc, char *argv[])
{int i = 0;if (argc > 1) I = atof(argv[1]);f1.index = 1;f2.index = 2;f3.index = 3;f4.index = 4;f1.max_e.bw = 0.9 * C;f2.max_e.bw = 0.3 * C;f3.max_e.bw = 0.6 * C;f1.max_e.E = f1.max_e.bw / RTPROP;f2.max_e.E = f2.max_e.bw / RTPROP;f3.max_e.E = f3.max_e.bw / RTPROP;f1.I = I;f2.I = I;f3.I = I;f4.I = 0;f1.srtt = f1.min_rtt = RTPROP;f2.srtt = f2.min_rtt = RTPROP;f3.srtt = f3.min_rtt = RTPROP;f4.srtt = f4.min_rtt = RTPROP;f1.inflt = 0.1 * C * RTPROP;f2.inflt = 0.3 * C * RTPROP;f3.inflt = 0.6 * C * RTPROP;f1.e_samples[BW_FILTER_LEN - 1] = f1.max_e;f2.e_samples[BW_FILTER_LEN - 1] = f2.max_e;f3.e_samples[BW_FILTER_LEN - 1] = f3.max_e;for (i = 0; i < 3000; i++) {simulate_one_phase(i);}return 0;
}

算法和建模分别参见 inflight 守恒背后的哲学 与 inflight 守恒数学建模.

这个算法的核心只需要设置 remain 余量,剩下的跟踪 E_best = max(bw / delay) 即可,因此 remain 一定是个负反馈方程:

R e m a i n = α ⋅ R T T m i n ⋅ B W w h e n _ E _ b e s t β ⋅ R T T m i n + B W w h e n _ E _ b e s t ⋅ R T T s m o o t h ⋅ R T T m i n R T T s m o o t h Remain=\dfrac{\alpha\cdot RTT_{min}\cdot BW_{when\_E\_best}}{\beta \cdot RTT_{min}+BW_{when\_E\_best}\cdot RTT_{smooth}}\cdot \dfrac{RTT_{min}}{RTT_{smooth}} Remain=βRTTmin+BWwhen_E_bestRTTsmoothαRTTminBWwhen_E_bestRTTsmoothRTTmin

效果如下:
在这里插入图片描述

明显有负反馈效果,但还是需要增加自由度,继续调参,我需要的效果是无论多少条流,所有流的 Remain 之和在一个有限范围内。

而 inflt 收敛效果如下:
在这里插入图片描述

rtt 平稳且并未膨胀:
在这里插入图片描述

浙江温州皮鞋湿,下雨进水不会胖。

这篇关于inflight 守恒算法的实现和仿真的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1109981

相关文章

分布式锁在Spring Boot应用中的实现过程

《分布式锁在SpringBoot应用中的实现过程》文章介绍在SpringBoot中通过自定义Lock注解、LockAspect切面和RedisLockUtils工具类实现分布式锁,确保多实例并发操作... 目录Lock注解LockASPect切面RedisLockUtils工具类总结在现代微服务架构中,分布

Java使用Thumbnailator库实现图片处理与压缩功能

《Java使用Thumbnailator库实现图片处理与压缩功能》Thumbnailator是高性能Java图像处理库,支持缩放、旋转、水印添加、裁剪及格式转换,提供易用API和性能优化,适合Web应... 目录1. 图片处理库Thumbnailator介绍2. 基本和指定大小图片缩放功能2.1 图片缩放的

Python使用Tenacity一行代码实现自动重试详解

《Python使用Tenacity一行代码实现自动重试详解》tenacity是一个专为Python设计的通用重试库,它的核心理念就是用简单、清晰的方式,为任何可能失败的操作添加重试能力,下面我们就来看... 目录一切始于一个简单的 API 调用Tenacity 入门:一行代码实现优雅重试精细控制:让重试按我

Redis客户端连接机制的实现方案

《Redis客户端连接机制的实现方案》本文主要介绍了Redis客户端连接机制的实现方案,包括事件驱动模型、非阻塞I/O处理、连接池应用及配置优化,具有一定的参考价值,感兴趣的可以了解一下... 目录1. Redis连接模型概述2. 连接建立过程详解2.1 连php接初始化流程2.2 关键配置参数3. 最大连

Python实现网格交易策略的过程

《Python实现网格交易策略的过程》本文讲解Python网格交易策略,利用ccxt获取加密货币数据及backtrader回测,通过设定网格节点,低买高卖获利,适合震荡行情,下面跟我一起看看我们的第一... 网格交易是一种经典的量化交易策略,其核心思想是在价格上下预设多个“网格”,当价格触发特定网格时执行买

python设置环境变量路径实现过程

《python设置环境变量路径实现过程》本文介绍设置Python路径的多种方法:临时设置(Windows用`set`,Linux/macOS用`export`)、永久设置(系统属性或shell配置文件... 目录设置python路径的方法临时设置环境变量(适用于当前会话)永久设置环境变量(Windows系统

Python对接支付宝支付之使用AliPay实现的详细操作指南

《Python对接支付宝支付之使用AliPay实现的详细操作指南》支付宝没有提供PythonSDK,但是强大的github就有提供python-alipay-sdk,封装里很多复杂操作,使用这个我们就... 目录一、引言二、准备工作2.1 支付宝开放平台入驻与应用创建2.2 密钥生成与配置2.3 安装ali

Spring Security 单点登录与自动登录机制的实现原理

《SpringSecurity单点登录与自动登录机制的实现原理》本文探讨SpringSecurity实现单点登录(SSO)与自动登录机制,涵盖JWT跨系统认证、RememberMe持久化Token... 目录一、核心概念解析1.1 单点登录(SSO)1.2 自动登录(Remember Me)二、代码分析三、

PyCharm中配置PyQt的实现步骤

《PyCharm中配置PyQt的实现步骤》PyCharm是JetBrains推出的一款强大的PythonIDE,结合PyQt可以进行pythion高效开发桌面GUI应用程序,本文就来介绍一下PyCha... 目录1. 安装China编程PyQt1.PyQt 核心组件2. 基础 PyQt 应用程序结构3. 使用 Q

Python实现批量提取BLF文件时间戳

《Python实现批量提取BLF文件时间戳》BLF(BinaryLoggingFormat)作为Vector公司推出的CAN总线数据记录格式,被广泛用于存储车辆通信数据,本文将使用Python轻松提取... 目录一、为什么需要批量处理 BLF 文件二、核心代码解析:从文件遍历到数据导出1. 环境准备与依赖库