【ElasticSearch】(七)浅析search_after 及 fromsize,scroll,search_after性能分析

2024-08-26 20:58

本文主要是介绍【ElasticSearch】(七)浅析search_after 及 fromsize,scroll,search_after性能分析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、"search_after"是什么?

     “search_after”是用于查询的dsl,可以起到类似"from & size"分页作用的结构化查询,代码展示如下:

GET twitter/_search
{"size": 10,"query": {"match" : {"title" : "elasticsearch"}},"search_after": [1000],"sort": [{"date": "asc"},{"tie_breaker_id": "asc"}]
}

        上述语句的含义在于,查询第1000~1010条语句,可以看做另外一种from size分页。

 

二、为什么使用“search_after”?

      参看之前的文章,分页查询通过from & size,scroll 都可以实现。但是这两种方式都有各自的弊端,比如“Pagination of results can be done by using the from and size but the cost becomes prohibitive when the deep pagination is reached. The index.max_result_window which defaults to 10,000 is a safeguard, search requests take heap memory and time proportional to from + size. The Scroll api is recommended for efficient deep scrolling but scroll contexts are costly and it is not recommended to use it for real time user requests. ”

       可归纳为亮点:

       1、from size,深度分页或者size特别大的情况,会出deep pagination问题;且es的自保机制max_result_window也会阻预设的查询。

       2、scroll虽然能够解决from size带来的问题,但是由于它代表的是某个时刻的snapshot,不适合做实时查询;且由于scroll后接超时时间,频繁地发起scroll请求,也会出现一系列问题。

      此时,search_after恰巧能够解决scroll的非实时取值问题。

 

三、form&size / scroll / search_after 性能比较

      假设执行如下查询:

GET twitter/_search
{"query": {"match" : {"title" : "elasticsearch"}}
}

      分别分页获取【1 - 10】【49000 - 49010】【 99000 - 99010】范围各10条数据(前提10w条),性能大致是这样:

es分页性能对比表
分页方式1~1049000~4901099000~99010
form…size8ms30ms117ms
scroll7ms66ms36ms
search_after5ms8ms7ms

 

      note:该数据并非博主本人测试,是公司wiki里负责es的同事的实验结果。

      由此可知,超级深的分页,使用search_after最为合适了,from&size方式,列表查询已经够了(一般人的操作部分查看第20页之后的数据),导出列表可以使用scroll。

      对于三者的原理:

       (1) from / size : 该查询的实现原理类似于mysql中的limit,比如查询第10001条数据,那么需要将前面的10000条都拿出来,进行过滤,最终才得到数据。(性能较差,实现简单,适用于少量数据,数据量不超过10w)。
       (2) scroll:该查询实现类似于消息消费的机制,首次查询的时候会在内存中保存一个历史快照以及游标(scroll_id),记录当前消息查询的终止位置,下次查询的时候将基于游标进行消费(性能良好,维护成本高,在游标失效前,不会更新数据,不够灵活,一旦游标创建size就不可改变,适用于大量数据导出或者索引重建)
       (3) search_after: 性能优秀,类似于优化后的分页查询,历史条件过滤掉数据。

      

四、注意事项

      1.使用search_after查询,from参数设置为0或者-1.

      2.search_after is not a solution to jump freely to a random page but rather to scroll many queries in parallel. It is very similar to the scroll API but unlike it, the search_after parameter is stateless, it is always resolved against the latest version of the searcher. For this reason the sort order may change during a walk depending on the updates and deletes of your index. 意思就是说随机地跳跃分页,search_after的支持没有scroll好。

      

 

 

这篇关于【ElasticSearch】(七)浅析search_after 及 fromsize,scroll,search_after性能分析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1109667

相关文章

深度剖析SpringBoot日志性能提升的原因与解决

《深度剖析SpringBoot日志性能提升的原因与解决》日志记录本该是辅助工具,却为何成了性能瓶颈,SpringBoot如何用代码彻底破解日志导致的高延迟问题,感兴趣的小伙伴可以跟随小编一起学习一下... 目录前言第一章:日志性能陷阱的底层原理1.1 日志级别的“双刃剑”效应1.2 同步日志的“吞吐量杀手”

Android 缓存日志Logcat导出与分析最佳实践

《Android缓存日志Logcat导出与分析最佳实践》本文全面介绍AndroidLogcat缓存日志的导出与分析方法,涵盖按进程、缓冲区类型及日志级别过滤,自动化工具使用,常见问题解决方案和最佳实... 目录android 缓存日志(Logcat)导出与分析全攻略为什么要导出缓存日志?按需过滤导出1. 按

Java慢查询排查与性能调优完整实战指南

《Java慢查询排查与性能调优完整实战指南》Java调优是一个广泛的话题,它涵盖了代码优化、内存管理、并发处理等多个方面,:本文主要介绍Java慢查询排查与性能调优的相关资料,文中通过代码介绍的非... 目录1. 事故全景:从告警到定位1.1 事故时间线1.2 关键指标异常1.3 排查工具链2. 深度剖析:

深入解析Java NIO在高并发场景下的性能优化实践指南

《深入解析JavaNIO在高并发场景下的性能优化实践指南》随着互联网业务不断演进,对高并发、低延时网络服务的需求日益增长,本文将深入解析JavaNIO在高并发场景下的性能优化方法,希望对大家有所帮助... 目录简介一、技术背景与应用场景二、核心原理深入分析2.1 Selector多路复用2.2 Buffer

Linux中的HTTPS协议原理分析

《Linux中的HTTPS协议原理分析》文章解释了HTTPS的必要性:HTTP明文传输易被篡改和劫持,HTTPS通过非对称加密协商对称密钥、CA证书认证和混合加密机制,有效防范中间人攻击,保障通信安全... 目录一、什么是加密和解密?二、为什么需要加密?三、常见的加密方式3.1 对称加密3.2非对称加密四、

MySQL中读写分离方案对比分析与选型建议

《MySQL中读写分离方案对比分析与选型建议》MySQL读写分离是提升数据库可用性和性能的常见手段,本文将围绕现实生产环境中常见的几种读写分离模式进行系统对比,希望对大家有所帮助... 目录一、问题背景介绍二、多种解决方案对比2.1 原生mysql主从复制2.2 Proxy层中间件:ProxySQL2.3

基于Python Playwright进行前端性能测试的脚本实现

《基于PythonPlaywright进行前端性能测试的脚本实现》在当今Web应用开发中,性能优化是提升用户体验的关键因素之一,本文将介绍如何使用Playwright构建一个自动化性能测试工具,希望... 目录引言工具概述整体架构核心实现解析1. 浏览器初始化2. 性能数据收集3. 资源分析4. 关键性能指

python使用Akshare与Streamlit实现股票估值分析教程(图文代码)

《python使用Akshare与Streamlit实现股票估值分析教程(图文代码)》入职测试中的一道题,要求:从Akshare下载某一个股票近十年的财务报表包括,资产负债表,利润表,现金流量表,保存... 目录一、前言二、核心知识点梳理1、Akshare数据获取2、Pandas数据处理3、Matplotl

python panda库从基础到高级操作分析

《pythonpanda库从基础到高级操作分析》本文介绍了Pandas库的核心功能,包括处理结构化数据的Series和DataFrame数据结构,数据读取、清洗、分组聚合、合并、时间序列分析及大数据... 目录1. Pandas 概述2. 基本操作:数据读取与查看3. 索引操作:精准定位数据4. Group

MySQL中EXISTS与IN用法使用与对比分析

《MySQL中EXISTS与IN用法使用与对比分析》在MySQL中,EXISTS和IN都用于子查询中根据另一个查询的结果来过滤主查询的记录,本文将基于工作原理、效率和应用场景进行全面对比... 目录一、基本用法详解1. IN 运算符2. EXISTS 运算符二、EXISTS 与 IN 的选择策略三、性能对比