前端算法 === 力扣 111 二叉树的最小深度

2024-08-26 18:12

本文主要是介绍前端算法 === 力扣 111 二叉树的最小深度,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

问题描述

DFS(深度优先搜索)方案

BFS(广度优先搜索)方案

总结


力扣(LeetCode)上的题目111是关于二叉树的最小深度问题。这个问题可以通过深度优先搜索(DFS)和广度优先搜索(BFS)两种方法来解决。下面我将分别对这两种方法进行讲解。

 

 

问题描述

给定一个二叉树,找出它的最小深度。最小深度是从根节点到最近叶子节点的最短路径上的节点数量。

本题还有一个误区,题目中说的是:最小深度是从根节点到最近叶子节点的最短路径上的节点数量。,注意是叶子节点。

什么是叶子节点,左右都为空的节点才是叶子节点!

111.二叉树的最小深度

DFS(深度优先搜索)方案

DFS是一种自顶向下的搜索策略,它从根节点开始,尽可能深地搜索树的分支。在这个问题中,我们可以递归地遍历二叉树的每个节点,直到到达叶子节点。

  1. 基本情况:如果当前节点为空,返回0。
  2. 递归:分别对当前节点的左子树和右子树调用DFS,获取它们的最小深度。
  3. 比较:比较左子树和右子树的深度,取较小者加1(当前节点的深度)。
function minDepth(root) {// 基本情况:如果根节点为空,返回0,因为空树的深度是0if (root === null) {return 0;}// 如果左子树为空,只考虑右子树的深度if (root.left === null) {return minDepth(root.right) + 1; // 递归调用右子树,并将深度加1}// 如果右子树为空,只考虑左子树的深度if (root.right === null) {return minDepth(root.left) + 1; // 递归调用左子树,并将深度加1}// 如果左右子树都不为空,比较左右子树的深度,选择较小的深度,然后加1return Math.min(minDepth(root.left), minDepth(root.right)) + 1;
}
  • root:当前正在考虑的节点。
  • root.left 和 root.right:当前节点的左子节点和右子节点。
  • minDepth(root.left) 和 minDepth(root.right):递归调用函数本身,分别计算左子树和右子树的最小深度。
  • Math.min(...):选择两个深度中的较小值。
  • +1:因为我们在计算从根节点到叶子节点的路径长度,所以每经过一个节点,深度就加1。

递归的美妙之处在于它能够自然地处理树结构,每次递归调用都处理树的一个分支,直到达到叶子节点,然后逐层返回,直到得到整个树的最小深度。这种方法直观且易于理解,特别是对于树结构的问题。

BFS(广度优先搜索)方案

BFS是一种自底向上的搜索策略,它从根节点开始,逐层遍历树的所有节点。在这个问题中,我们可以使用队列来实现BFS。

  1. 初始化:创建一个队列,将根节点入队。
  2. 循环:只要队列不为空,执行以下操作:
    • 取出队列中的所有节点,记为当前层。
    • 对于当前层的每个节点,检查其左右子节点:
      • 如果一个节点没有左子节点或右子节点,返回当前层的深度。
      • 如果有子节点,将子节点加入队列。
  3. 层级计数:每处理完一层,深度计数器加1。
function minDepth(root) {if (!root) return 0;const queue = [[root, 1]];let depth = 1;while (queue.length) {const [node, d] = queue.shift();if (!node.left && !node.right) return d;if (node.left) queue.push([node.left, depth + 1]);if (node.right) queue.push([node.right, depth + 1]);}
}

总结

DFS和BFS都是解决这个问题的有效方法。DFS的优点是代码简单,但可能在某些情况下效率不如BFS。BFS通常更直观,因为它逐层遍历树,而且对于这个问题,BFS可以更快地找到最小深度,因为它会在找到第一个叶子节点时立即停止搜索。然而,BFS需要额外的存储空间来存储队列。根据具体问题和场景,你可以选择适合的方法。

这篇关于前端算法 === 力扣 111 二叉树的最小深度的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1109300

相关文章

Java中Redisson 的原理深度解析

《Java中Redisson的原理深度解析》Redisson是一个高性能的Redis客户端,它通过将Redis数据结构映射为Java对象和分布式对象,实现了在Java应用中方便地使用Redis,本文... 目录前言一、核心设计理念二、核心架构与通信层1. 基于 Netty 的异步非阻塞通信2. 编解码器三、

Java HashMap的底层实现原理深度解析

《JavaHashMap的底层实现原理深度解析》HashMap基于数组+链表+红黑树结构,通过哈希算法和扩容机制优化性能,负载因子与树化阈值平衡效率,是Java开发必备的高效数据结构,本文给大家介绍... 目录一、概述:HashMap的宏观结构二、核心数据结构解析1. 数组(桶数组)2. 链表节点(Node

Java 虚拟线程的创建与使用深度解析

《Java虚拟线程的创建与使用深度解析》虚拟线程是Java19中以预览特性形式引入,Java21起正式发布的轻量级线程,本文给大家介绍Java虚拟线程的创建与使用,感兴趣的朋友一起看看吧... 目录一、虚拟线程简介1.1 什么是虚拟线程?1.2 为什么需要虚拟线程?二、虚拟线程与平台线程对比代码对比示例:三

vite搭建vue3项目的搭建步骤

《vite搭建vue3项目的搭建步骤》本文主要介绍了vite搭建vue3项目的搭建步骤,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学... 目录1.确保Nodejs环境2.使用vite-cli工具3.进入项目安装依赖1.确保Nodejs环境

Nginx搭建前端本地预览环境的完整步骤教学

《Nginx搭建前端本地预览环境的完整步骤教学》这篇文章主要为大家详细介绍了Nginx搭建前端本地预览环境的完整步骤教学,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录项目目录结构核心配置文件:nginx.conf脚本化操作:nginx.shnpm 脚本集成总结:对前端的意义很多

Python函数作用域与闭包举例深度解析

《Python函数作用域与闭包举例深度解析》Python函数的作用域规则和闭包是编程中的关键概念,它们决定了变量的访问和生命周期,:本文主要介绍Python函数作用域与闭包的相关资料,文中通过代码... 目录1. 基础作用域访问示例1:访问全局变量示例2:访问外层函数变量2. 闭包基础示例3:简单闭包示例4

深入理解Mysql OnlineDDL的算法

《深入理解MysqlOnlineDDL的算法》本文主要介绍了讲解MysqlOnlineDDL的算法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小... 目录一、Online DDL 是什么?二、Online DDL 的三种主要算法2.1COPY(复制法)

前端缓存策略的自解方案全解析

《前端缓存策略的自解方案全解析》缓存从来都是前端的一个痛点,很多前端搞不清楚缓存到底是何物,:本文主要介绍前端缓存的自解方案,文中通过代码介绍的非常详细,需要的朋友可以参考下... 目录一、为什么“清缓存”成了技术圈的梗二、先给缓存“把个脉”:浏览器到底缓存了谁?三、设计思路:把“发版”做成“自愈”四、代码

通过React实现页面的无限滚动效果

《通过React实现页面的无限滚动效果》今天我们来聊聊无限滚动这个现代Web开发中不可或缺的技术,无论你是刷微博、逛知乎还是看脚本,无限滚动都已经渗透到我们日常的浏览体验中,那么,如何优雅地实现它呢?... 目录1. 早期的解决方案2. 交叉观察者:IntersectionObserver2.1 Inter

Vue3视频播放组件 vue3-video-play使用方式

《Vue3视频播放组件vue3-video-play使用方式》vue3-video-play是Vue3的视频播放组件,基于原生video标签开发,支持MP4和HLS流,提供全局/局部引入方式,可监听... 目录一、安装二、全局引入三、局部引入四、基本使用五、事件监听六、播放 HLS 流七、更多功能总结在 v