前端算法 === 力扣 111 二叉树的最小深度

2024-08-26 18:12

本文主要是介绍前端算法 === 力扣 111 二叉树的最小深度,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

问题描述

DFS(深度优先搜索)方案

BFS(广度优先搜索)方案

总结


力扣(LeetCode)上的题目111是关于二叉树的最小深度问题。这个问题可以通过深度优先搜索(DFS)和广度优先搜索(BFS)两种方法来解决。下面我将分别对这两种方法进行讲解。

 

 

问题描述

给定一个二叉树,找出它的最小深度。最小深度是从根节点到最近叶子节点的最短路径上的节点数量。

本题还有一个误区,题目中说的是:最小深度是从根节点到最近叶子节点的最短路径上的节点数量。,注意是叶子节点。

什么是叶子节点,左右都为空的节点才是叶子节点!

111.二叉树的最小深度

DFS(深度优先搜索)方案

DFS是一种自顶向下的搜索策略,它从根节点开始,尽可能深地搜索树的分支。在这个问题中,我们可以递归地遍历二叉树的每个节点,直到到达叶子节点。

  1. 基本情况:如果当前节点为空,返回0。
  2. 递归:分别对当前节点的左子树和右子树调用DFS,获取它们的最小深度。
  3. 比较:比较左子树和右子树的深度,取较小者加1(当前节点的深度)。
function minDepth(root) {// 基本情况:如果根节点为空,返回0,因为空树的深度是0if (root === null) {return 0;}// 如果左子树为空,只考虑右子树的深度if (root.left === null) {return minDepth(root.right) + 1; // 递归调用右子树,并将深度加1}// 如果右子树为空,只考虑左子树的深度if (root.right === null) {return minDepth(root.left) + 1; // 递归调用左子树,并将深度加1}// 如果左右子树都不为空,比较左右子树的深度,选择较小的深度,然后加1return Math.min(minDepth(root.left), minDepth(root.right)) + 1;
}
  • root:当前正在考虑的节点。
  • root.left 和 root.right:当前节点的左子节点和右子节点。
  • minDepth(root.left) 和 minDepth(root.right):递归调用函数本身,分别计算左子树和右子树的最小深度。
  • Math.min(...):选择两个深度中的较小值。
  • +1:因为我们在计算从根节点到叶子节点的路径长度,所以每经过一个节点,深度就加1。

递归的美妙之处在于它能够自然地处理树结构,每次递归调用都处理树的一个分支,直到达到叶子节点,然后逐层返回,直到得到整个树的最小深度。这种方法直观且易于理解,特别是对于树结构的问题。

BFS(广度优先搜索)方案

BFS是一种自底向上的搜索策略,它从根节点开始,逐层遍历树的所有节点。在这个问题中,我们可以使用队列来实现BFS。

  1. 初始化:创建一个队列,将根节点入队。
  2. 循环:只要队列不为空,执行以下操作:
    • 取出队列中的所有节点,记为当前层。
    • 对于当前层的每个节点,检查其左右子节点:
      • 如果一个节点没有左子节点或右子节点,返回当前层的深度。
      • 如果有子节点,将子节点加入队列。
  3. 层级计数:每处理完一层,深度计数器加1。
function minDepth(root) {if (!root) return 0;const queue = [[root, 1]];let depth = 1;while (queue.length) {const [node, d] = queue.shift();if (!node.left && !node.right) return d;if (node.left) queue.push([node.left, depth + 1]);if (node.right) queue.push([node.right, depth + 1]);}
}

总结

DFS和BFS都是解决这个问题的有效方法。DFS的优点是代码简单,但可能在某些情况下效率不如BFS。BFS通常更直观,因为它逐层遍历树,而且对于这个问题,BFS可以更快地找到最小深度,因为它会在找到第一个叶子节点时立即停止搜索。然而,BFS需要额外的存储空间来存储队列。根据具体问题和场景,你可以选择适合的方法。

这篇关于前端算法 === 力扣 111 二叉树的最小深度的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1109300

相关文章

深度解析Spring Security 中的 SecurityFilterChain核心功能

《深度解析SpringSecurity中的SecurityFilterChain核心功能》SecurityFilterChain通过组件化配置、类型安全路径匹配、多链协同三大特性,重构了Spri... 目录Spring Security 中的SecurityFilterChain深度解析一、Security

深度解析Nginx日志分析与499状态码问题解决

《深度解析Nginx日志分析与499状态码问题解决》在Web服务器运维和性能优化过程中,Nginx日志是排查问题的重要依据,本文将围绕Nginx日志分析、499状态码的成因、排查方法及解决方案展开讨论... 目录前言1. Nginx日志基础1.1 Nginx日志存放位置1.2 Nginx日志格式2. 499

从入门到精通详解LangChain加载HTML内容的全攻略

《从入门到精通详解LangChain加载HTML内容的全攻略》这篇文章主要为大家详细介绍了如何用LangChain优雅地处理HTML内容,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录引言:当大语言模型遇见html一、HTML加载器为什么需要专门的HTML加载器核心加载器对比表二

深度解析Java DTO(最新推荐)

《深度解析JavaDTO(最新推荐)》DTO(DataTransferObject)是一种用于在不同层(如Controller层、Service层)之间传输数据的对象设计模式,其核心目的是封装数据,... 目录一、什么是DTO?DTO的核心特点:二、为什么需要DTO?(对比Entity)三、实际应用场景解析

深度解析Java项目中包和包之间的联系

《深度解析Java项目中包和包之间的联系》文章浏览阅读850次,点赞13次,收藏8次。本文详细介绍了Java分层架构中的几个关键包:DTO、Controller、Service和Mapper。_jav... 目录前言一、各大包1.DTO1.1、DTO的核心用途1.2. DTO与实体类(Entity)的区别1

Java中的雪花算法Snowflake解析与实践技巧

《Java中的雪花算法Snowflake解析与实践技巧》本文解析了雪花算法的原理、Java实现及生产实践,涵盖ID结构、位运算技巧、时钟回拨处理、WorkerId分配等关键点,并探讨了百度UidGen... 目录一、雪花算法核心原理1.1 算法起源1.2 ID结构详解1.3 核心特性二、Java实现解析2.

深度解析Python装饰器常见用法与进阶技巧

《深度解析Python装饰器常见用法与进阶技巧》Python装饰器(Decorator)是提升代码可读性与复用性的强大工具,本文将深入解析Python装饰器的原理,常见用法,进阶技巧与最佳实践,希望可... 目录装饰器的基本原理函数装饰器的常见用法带参数的装饰器类装饰器与方法装饰器装饰器的嵌套与组合进阶技巧

深度解析Spring Boot拦截器Interceptor与过滤器Filter的区别与实战指南

《深度解析SpringBoot拦截器Interceptor与过滤器Filter的区别与实战指南》本文深度解析SpringBoot中拦截器与过滤器的区别,涵盖执行顺序、依赖关系、异常处理等核心差异,并... 目录Spring Boot拦截器(Interceptor)与过滤器(Filter)深度解析:区别、实现

深度解析Spring AOP @Aspect 原理、实战与最佳实践教程

《深度解析SpringAOP@Aspect原理、实战与最佳实践教程》文章系统讲解了SpringAOP核心概念、实现方式及原理,涵盖横切关注点分离、代理机制(JDK/CGLIB)、切入点类型、性能... 目录1. @ASPect 核心概念1.1 AOP 编程范式1.2 @Aspect 关键特性2. 完整代码实

SpringBoot开发中十大常见陷阱深度解析与避坑指南

《SpringBoot开发中十大常见陷阱深度解析与避坑指南》在SpringBoot的开发过程中,即使是经验丰富的开发者也难免会遇到各种棘手的问题,本文将针对SpringBoot开发中十大常见的“坑... 目录引言一、配置总出错?是不是同时用了.properties和.yml?二、换个位置配置就失效?搞清楚加