python pandas.DataFrame 数据合并

2024-08-26 12:38

本文主要是介绍python pandas.DataFrame 数据合并,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

# -*- coding: utf-8 -*-# encoding=utf-8
from __future__ import division
import numpy as np
import xlwt
import os
#  导入matplot 函数
import matplotlib.pyplot as matplot_pyplot
#  导入拉格朗日插值函数
from scipy.interpolate import lagrangenp.random.seed(12345)
matplot_pyplot.rc('figure', figsize=(10, 6))
from pandas import Series, DataFrame
import pandas as pdnp.set_printoptions(precision=4, threshold=500)
pd.options.display.max_rows = 100
#  缺失值处理---拉格朗日插值法
#  销量数据路径
inputFile = 'd:/data/catering_sale.xls'
#  输出数据路径
outputFile = 'd:/data/sales.xls'
#  读入数据
data = pd.read_excel(inputFile)
#  过滤异常值
data[u'销量'][(data[u'销量'] < 400) | (data[u'销量'] > 5000)] = None# s 为列向量,n 为被插值的位置,k 为取前后的数据个数,默认为5
def ployinterp_column(s, n, k=5):#  取数y = s[list(range(n - k, n)) + list(range(n + 1, n + 1 + k))]#  剔除空值y = y[y.notnull()]  # 剔除空值return lagrange(y.index, list(y))(n)  # 插值并返回插值结果# 逐个元素判断是否需要插值
for i in data.columns:for j in range(len(data)):if (data[i].isnull())[j]:  # 如果为空即插值data[i][j] = ployinterp_column(data[i], j)
# data.to_excel(outputFile) # 输出结果,写入文件
# print data### dataframe 合并
# - Merge 方法:根据一个或多个键将不同dataFrame 中的行合并
# - Concat方法:沿一条轴将多个对象堆叠起来# 数据风格的DataFrame 合并
# - Merge
#  - Merge 参数df1 = pd.DataFrame({'key': ['b', 'b', 'a', 'c', 'a', 'a', 'b'],'data': range(7)})
df2 = pd.DataFrame({'key': ['a', 'b', 'd'],'data2': range(3)})
print 'df1:=\n', df1
print 'df2;=\n', df2pd.merge(df1, df2)pd.merge(df1, df2, on='key')# 2
df3 = pd.DataFrame({'lkey': ['b', 'b', 'a', 'c', 'a', 'a', 'b'],'data1': range(7)})
print 'df3:=\n', df3
df4 = pd.DataFrame({'rkey': ['a', 'b', 'd'],'data2': range(3)})
print 'df4:=\n', df4
#  内连接
df3_merge_df4 = pd.merge(df3, df4, left_on='lkey', right_on='rkey')
print 'df3_merge_df4:=\n', df3_merge_df4
#  外连接
df1_merge_df2 = pd.merge(df1, df2, how='outer')
print 'df1_merge_df2:=\n', df1_merge_df2
#  左连接
df1 = pd.DataFrame({'key': ['b', 'b', 'a', 'c', 'a', 'b'],'data1': range(6)})
df2 = pd.DataFrame({'key': ['a', 'b', 'a', 'b', 'd'],'data2': range(5)})
print 'df1:=\n', df1
print 'df2:=\n', df2
#  左连接
df1_left_df2 = pd.merge(df1, df2, on='key', how='left')
print 'df1_left_df2:=\n', df1_merge_df2
#  内连接
df1_inner_df2 = pd.merge(df1, df2, how='inner')
print 'df1_inner_df2:=\n', df1_inner_df2
# 4
left = pd.DataFrame({'key1': ['foo', 'foo', 'bar'],'key2': ['one', 'two', 'one'],'key3': [1, 2, 3]})
right = pd.DataFrame({'key1': ['foo', 'foo', 'bar', 'bar'],'key2': ['one', 'one', 'one', 'two'],'rval': [4, 5, 6, 7]})
print 'left:=\n', left
print 'right:=\n', right
left_merge_right = pd.merge(left, right, on=['key1', 'key2'], how='outer')#
left_on_right = pd.merge(left, right, on='key1')
print 'left_on_right:=\n', left_on_right
left_one_right = pd.merge(left, right, on='key1', suffixes=('_left', '_right'))
print 'left_on_right:=\n', left_on_right# 索引上的合并
#  轴向连接
#  - Numpy 数组 -----concatenation
#  - Pandas 对象 ----concat
#  -- Concat 对象
# 1
left1 = pd.DataFrame({'key': ['a', 'b', 'a', 'a', 'b', 'c'],'value': range(6)})
right1 = pd.DataFrame({'group_val': [3.5, 7]}, index=['a', 'b'])
print 'left1:=\n', left1
print 'right1:=\n', right1
left_index_right = pd.merge(left1, right1, left_on='key', right_index=True)
print 'left_index_right:=\n', left_index_right# 2
lefth = pd.DataFrame({'key1': ['Ohio', 'Ohio', 'Ohio', 'Nevada', 'Nevada'],'key2': [2000, 2001, 2002, 2001, 2002],'data': np.arange((5.))})
righth = pd.DataFrame(np.arange(12).reshape((6, 2)),index=[['Nevada', 'Nevada', 'Ohio', 'Ohio', 'Ohio', 'Ohio'],[2001, 2000, 2000, 2000, 2001, 2002]],columns=['event1', 'event2']
)
print 'lefth:=\n', lefth
print 'righth:=\n', righth
lefth_merge_righth = pd.merge(lefth, righth,left_on=['key1', 'key2'],right_index=True)
print 'lefth_merge_righth:=\n', lefth_merge_righth
left2 = pd.DataFrame([[1., 2], [3., 4], [5., 6]],index=['a', 'c', 'e'],columns=['Ohio', 'Nevada']
)
right2 = pd.DataFrame([[1., 2], [3., 4], [5., 6]],index=['a', 'b', 'e'],columns=['Ohio', 'Nevada']
)print 'left2:=\n', left2
print 'right2:=\n', right2
left2_right2 = pd.merge(left2, right2, how='outer', left_index=True, right_index=True)
print 'left2_right2:=\n', left2_right2
# 3
left2 = pd.DataFrame([[1., 2], [3., 4], [5., 6]], index=['a', 'c', 'e'],columns=['Ohio', 'Nevada'])
right2 = pd.DataFrame([[7., 8.], [9., 10.], [11., 12.], [13, 14]],index=['b', 'c', 'd', 'e'],columns=['Missouri', 'Alabama'])
print 'left2:=\n', left2
print 'right2:=\n', right2left2_join_right2 = left2.join(right2, how='outer')
print 'left1:=\n', left1
print 'right1:=\n', right1
left1_merge_right1 = pd.merge(left1, right1, left_on='key', right_index=True)
print 'left1_merge_right1:=\n', left1_merge_right1
left1_join_right1 = left1.join(right1, on='key')
print 'left2_join_right2:=\n', left1_join_right1
# 4
another = pd.DataFrame([[7, 8], [9, 10], [11, 12], [16, 17]],index=['a', 'c', 'e', 'f'],columns=['New York', 'Oregon'])
#  多表外连接
left2_join_right2_another = left2.join([right2, another])
print 'another:=\n', another
print 'left2:=\n', left2
print 'right2:=\n', right2
print 'left2_join_right2_another:=\n', left2_join_right2_another
left2_outer_join_right2_another = left2.join([right2, another], how='outer')
print 'left2_outer_join_right2_another:=\n', left2_join_right2_another
#  轴向连接
#  Numpy数组 ---concatenation
#  Panda 对象 --- concat
#  Concat 的参数
arr=np.arange(12).reshape((3,4))
print arr

这篇关于python pandas.DataFrame 数据合并的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1108593

相关文章

Python+FFmpeg实现视频自动化处理的完整指南

《Python+FFmpeg实现视频自动化处理的完整指南》本文总结了一套在Python中使用subprocess.run调用FFmpeg进行视频自动化处理的解决方案,涵盖了跨平台硬件加速、中间素材处理... 目录一、 跨平台硬件加速:统一接口设计1. 核心映射逻辑2. python 实现代码二、 中间素材处

python中的flask_sqlalchemy的使用及示例详解

《python中的flask_sqlalchemy的使用及示例详解》文章主要介绍了在使用SQLAlchemy创建模型实例时,通过元类动态创建实例的方式,并说明了如何在实例化时执行__init__方法,... 目录@orm.reconstructorSQLAlchemy的回滚关联其他模型数据库基本操作将数据添

Python实现快速扫描目标主机的开放端口和服务

《Python实现快速扫描目标主机的开放端口和服务》这篇文章主要为大家详细介绍了如何使用Python编写一个功能强大的端口扫描器脚本,实现快速扫描目标主机的开放端口和服务,感兴趣的小伙伴可以了解下... 目录功能介绍场景应用1. 网络安全审计2. 系统管理维护3. 网络故障排查4. 合规性检查报错处理1.

MySQL快速复制一张表的四种核心方法(包括表结构和数据)

《MySQL快速复制一张表的四种核心方法(包括表结构和数据)》本文详细介绍了四种复制MySQL表(结构+数据)的方法,并对每种方法进行了对比分析,适用于不同场景和数据量的复制需求,特别是针对超大表(1... 目录一、mysql 复制表(结构+数据)的 4 种核心方法(面试结构化回答)方法 1:CREATE

Python轻松实现Word到Markdown的转换

《Python轻松实现Word到Markdown的转换》在文档管理、内容发布等场景中,将Word转换为Markdown格式是常见需求,本文将介绍如何使用FreeSpire.DocforPython实现... 目录一、工具简介二、核心转换实现1. 基础单文件转换2. 批量转换Word文件三、工具特性分析优点局

Python中4大日志记录库比较的终极PK

《Python中4大日志记录库比较的终极PK》日志记录框架是一种工具,可帮助您标准化应用程序中的日志记录过程,:本文主要介绍Python中4大日志记录库比较的相关资料,文中通过代码介绍的非常详细,... 目录一、logging库1、优点2、缺点二、LogAid库三、Loguru库四、Structlogphp

详解C++ 存储二进制数据容器的几种方法

《详解C++存储二进制数据容器的几种方法》本文主要介绍了详解C++存储二进制数据容器,包括std::vector、std::array、std::string、std::bitset和std::ve... 目录1.std::vector<uint8_t>(最常用)特点:适用场景:示例:2.std::arra

C++,C#,Rust,Go,Java,Python,JavaScript的性能对比全面讲解

《C++,C#,Rust,Go,Java,Python,JavaScript的性能对比全面讲解》:本文主要介绍C++,C#,Rust,Go,Java,Python,JavaScript性能对比全面... 目录编程语言性能对比、核心优势与最佳使用场景性能对比表格C++C#RustGoJavapythonjav

Python海象运算符:=的具体实现

《Python海象运算符:=的具体实现》海象运算符又称​​赋值表达式,Python3.8后可用,其核心设计是在表达式内部完成变量赋值并返回该值,从而简化代码逻辑,下面就来详细的介绍一下如何使用,感兴趣... 目录简介​​条件判断优化循环控制简化​推导式高效计算​正则匹配与数据提取​性能对比简介海象运算符

python项目环境切换的几种实现方式

《python项目环境切换的几种实现方式》本文主要介绍了python项目环境切换的几种实现方式,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一... 目录1. 如何在不同python项目中,安装不同的依赖2. 如何切换到不同项目的工作空间3.创建项目