机器学习:随机森林决策树学习算法及代码实现

2024-08-26 02:36

本文主要是介绍机器学习:随机森林决策树学习算法及代码实现,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1、概念

        随机森林(Random Forest)是一种集成学习方法,它通过构建多个决策树来进行分类或回归预测。随机森林的核心原理是“集思广益”,即通过组合多个弱学习器(决策树)的预测结果来提高整体模型的准确性和健壮性。

2、集成学习(Ensemble Learning)

        集成学习是一种机器学习方法,它结合多个学习器的预测结果来提高整体模型的性能。随机森林是集成学习的一种实现方式。

3、决策树(Decision Tree)

         决策树是一种监督学习算法,它通过学习简单的决策规则来预测目标值。每个决策树都是一个二叉树,每个节点代表一个特征的测试,每个分支代表测试的结果,每个叶节点代表一个预测结果。

4、Bagging(自助采样聚合)

        随机森林使用Bagging方法来减少模型的方差。Bagging是一种通过从原始数据集中随机抽取样本(有放回抽样)来构建多个训练集的方法。每个决策树都是在这些不同的训练集上训练得到的。

5、投票机制

        对于分类问题,随机森林通过多数投票的方式来确定最终的预测结果。每个决策树都会给出一个预测,随机森林会统计每个类别的得票数,得票数最多的类别被选为最终预测结果。

6、特征重要性

        随机森林可以评估每个特征对模型预测的贡献度,即特征重要性。这通常是通过观察在构建树时,某个特征被用于分割的次数来确定的。

7、处理能力

        随机森林能够处理高维数据,并且对于缺失数据具有一定的鲁棒性。它也可以处理分类和回归问题。

8、优点:     

  • 通常具有较高的准确率。
  • 对于高维数据表现良好。
  • 能够提供特征重要性的估计。
  • 对于数据集中的异常值和噪声具有一定的鲁棒性。

9、缺点

  • 训练时间可能较长,尤其是在数据集很大或特征很多的情况下。
  • 模型可能会占用较多的内存。
  • 模型的解释性不如单个决策树。

10、数据预处理,找到数据的特征与标签

data = pd.read_csv("spambase.csv")  # 读取数据集
x = data.iloc[:, :-1]  # 选取数据集中的特征列(除了最后一列)
y = data.iloc[:, -1]  # 选取数据集中的最后一列作为标签

11、划分训练集和测试集

x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.2, random_state=100)

12、创建随机森林分类器实例

rf = RandomForestClassifier(n_estimators=100, max_features=0.8, random_state=0)  # 创建随机森林分类器实例
rf.fit(x_train, y_train)  # 使用训练集数据训练模型

13、打印分类报告

predict_train = rf.predict(x_train)  # 使用训练集数据进行预测
print(metrics.classification_report(y_train, predict_train))  # 打印训练集的分类报告
predict_test = rf.predict(x_test)  # 使用测试集数据进行预测
print(metrics.classification_report(y_test, predict_test))  # 打印测试集的分类报告

14、数据可视化

import matplotlib.pyplot as plt  # 导入matplotlib.pyplot,用于数据可视化
from pylab import mpl  # 导入pylab的mpl模块# 获取每一项特征所占的权重(重要性)
importances = rf.feature_importances_
# 转换成数组,重新命名
im = pd.DataFrame(importances, columns=["importances"])
# 从原表格中获取所有列名称,将其转换成列表格式,除去最后一列
clos = data.columns
clos_1 = clos.values
clos_2 = clos_1.tolist()
clos = clos_2[:-1]  # 切片操作,获取除了最后一列的所有列名
# 将名称添加到im
im["clos"] = clos
# 对importances进行排序,获取前10个
im = im.sort_values(by=["importances"], ascending=False)[:10]index = range(len(im))  # 创建一个索引列表
plt.yticks(index, im.clos)  # 设置y轴的刻度标签为特征名称
plt.barh(index, im["importances"])  # 绘制水平条形图
plt.show()  # 显示图形

15、结果

16、完整代码

import pandas as pd  # 导入pandas库,用于数据处理
data = pd.read_csv("spambase.csv")  # 读取数据集
x = data.iloc[:, :-1]  # 选取数据集中的特征列(除了最后一列)
y = data.iloc[:, -1]  # 选取数据集中的最后一列作为标签from sklearn.model_selection import train_test_split  # 导入train_test_split函数# 将数据集分割为训练集和测试集,测试集占20%
x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.2, random_state=100)from sklearn.ensemble import RandomForestClassifier  # 导入RandomForestClassifier
rf = RandomForestClassifier(n_estimators=100, max_features=0.8, random_state=0)  # 创建随机森林分类器实例
rf.fit(x_train, y_train)  # 使用训练集数据训练模型from sklearn import metrics  # 导入metrics库,用于模型评估
predict_train = rf.predict(x_train)  # 使用训练集数据进行预测
print(metrics.classification_report(y_train, predict_train))  # 打印训练集的分类报告
predict_test = rf.predict(x_test)  # 使用测试集数据进行预测
print(metrics.classification_report(y_test, predict_test))  # 打印测试集的分类报告import matplotlib.pyplot as plt  # 导入matplotlib.pyplot,用于数据可视化
from pylab import mpl  # 导入pylab的mpl模块# 获取每一项特征所占的权重(重要性)
importances = rf.feature_importances_
# 转换成数组,重新命名
im = pd.DataFrame(importances, columns=["importances"])
# 从原表格中获取所有列名称,将其转换成列表格式,除去最后一列
clos = data.columns
clos_1 = clos.values
clos_2 = clos_1.tolist()
clos = clos_2[:-1]  # 切片操作,获取除了最后一列的所有列名
# 将名称添加到im
im["clos"] = clos
# 对importances进行排序,获取前10个
im = im.sort_values(by=["importances"], ascending=False)[:10]index = range(len(im))  # 创建一个索引列表
plt.yticks(index, im.clos)  # 设置y轴的刻度标签为特征名称
plt.barh(index, im["importances"])  # 绘制水平条形图
plt.show()  # 显示图形

这篇关于机器学习:随机森林决策树学习算法及代码实现的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1107304

相关文章

SpringBoot集成redisson实现延时队列教程

《SpringBoot集成redisson实现延时队列教程》文章介绍了使用Redisson实现延迟队列的完整步骤,包括依赖导入、Redis配置、工具类封装、业务枚举定义、执行器实现、Bean创建、消费... 目录1、先给项目导入Redisson依赖2、配置redis3、创建 RedissonConfig 配

Python的Darts库实现时间序列预测

《Python的Darts库实现时间序列预测》Darts一个集统计、机器学习与深度学习模型于一体的Python时间序列预测库,本文主要介绍了Python的Darts库实现时间序列预测,感兴趣的可以了解... 目录目录一、什么是 Darts?二、安装与基本配置安装 Darts导入基础模块三、时间序列数据结构与

Python使用FastAPI实现大文件分片上传与断点续传功能

《Python使用FastAPI实现大文件分片上传与断点续传功能》大文件直传常遇到超时、网络抖动失败、失败后只能重传的问题,分片上传+断点续传可以把大文件拆成若干小块逐个上传,并在中断后从已完成分片继... 目录一、接口设计二、服务端实现(FastAPI)2.1 运行环境2.2 目录结构建议2.3 serv

C#实现千万数据秒级导入的代码

《C#实现千万数据秒级导入的代码》在实际开发中excel导入很常见,现代社会中很容易遇到大数据处理业务,所以本文我就给大家分享一下千万数据秒级导入怎么实现,文中有详细的代码示例供大家参考,需要的朋友可... 目录前言一、数据存储二、处理逻辑优化前代码处理逻辑优化后的代码总结前言在实际开发中excel导入很

SpringBoot+RustFS 实现文件切片极速上传的实例代码

《SpringBoot+RustFS实现文件切片极速上传的实例代码》本文介绍利用SpringBoot和RustFS构建高性能文件切片上传系统,实现大文件秒传、断点续传和分片上传等功能,具有一定的参考... 目录一、为什么选择 RustFS + SpringBoot?二、环境准备与部署2.1 安装 RustF

Nginx部署HTTP/3的实现步骤

《Nginx部署HTTP/3的实现步骤》本文介绍了在Nginx中部署HTTP/3的详细步骤,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学... 目录前提条件第一步:安装必要的依赖库第二步:获取并构建 BoringSSL第三步:获取 Nginx

MyBatis Plus实现时间字段自动填充的完整方案

《MyBatisPlus实现时间字段自动填充的完整方案》在日常开发中,我们经常需要记录数据的创建时间和更新时间,传统的做法是在每次插入或更新操作时手动设置这些时间字段,这种方式不仅繁琐,还容易遗漏,... 目录前言解决目标技术栈实现步骤1. 实体类注解配置2. 创建元数据处理器3. 服务层代码优化填充机制详

Python实现Excel批量样式修改器(附完整代码)

《Python实现Excel批量样式修改器(附完整代码)》这篇文章主要为大家详细介绍了如何使用Python实现一个Excel批量样式修改器,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一... 目录前言功能特性核心功能界面特性系统要求安装说明使用指南基本操作流程高级功能技术实现核心技术栈关键函

Java实现字节字符转bcd编码

《Java实现字节字符转bcd编码》BCD是一种将十进制数字编码为二进制的表示方式,常用于数字显示和存储,本文将介绍如何在Java中实现字节字符转BCD码的过程,需要的小伙伴可以了解下... 目录前言BCD码是什么Java实现字节转bcd编码方法补充总结前言BCD码(Binary-Coded Decima

SpringBoot全局域名替换的实现

《SpringBoot全局域名替换的实现》本文主要介绍了SpringBoot全局域名替换的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一... 目录 项目结构⚙️ 配置文件application.yml️ 配置类AppProperties.Ja