Chainlit接入FastGpt接口完美对接,实现全新的用户聊天界面

本文主要是介绍Chainlit接入FastGpt接口完美对接,实现全新的用户聊天界面,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

前言

由于fastgpt只提供了一个分享用的网页应用,网页访问地址没法自定义,虽然可以接入NextWeb/ChatGPT web等开源应用。但是如果我们想直接给客户应用,还需要客户去设置配置,里面还有很多我们不想展示给客户的东西怎么办?于是,我使用Chainlit实现了一个无缝快速接入fastgpt实现自定义用户使用界面的应用,代码清晰简单。还可以自定义logo、欢迎语、网站图标等。
之前写一个一篇文章 《Chainlit接入FastGpt接口快速实现自定义用户聊天界面》 文章中实现了Fastgpt的对话接口,可以实现聊天,但是有些人想。接入Fastgpt的欢迎语,获取聊天历史记录等。本此的代码更新可以实现这些,下面我主要讲一些这次代码更新实现的亮点吧!

1. 接入Fastgpt后,可以自动更新成你的网站图标和网站名称

在这里插入图片描述

2. 接入欢迎语

在这里插入图片描述

3. 接入聊天记录

在这里插入图片描述

  • 不仅可以实现聊天记录的自动添加还可实现删除,搜索聊天记录的功能,原fastgpt的分享聊天网页可没有聊天搜索功能呦!

4 可以开启黑白主题的切换

在这里插入图片描述

5.可以自定义修改访问路径

当然这个功能需要你自己修改启动地址

快速开始

获取Fastgpt的信息

获取fastgpt的base_url和share_id

登录fastgpt后台,在工作台里,点击自己创建的AI应用,点击发布渠道,点击免登录窗口,创建新连接,创建后点击开始使用按钮。

  • 复制base_urlshare_id,后面需要配置到Chainlit的环境变量中

在这里插入图片描述

获取fastgpt的API_KEY

登录fastgpt后台,在工作台里,点击自己创建的AI应用,点击发布渠道,点击API访问创建,访问APIKEY.

  • 只需要复制API_KEY即可,后面需要配置到Chainlit的环境变量中
    在这里插入图片描述

Chainlit网页搭建

创建一个文件夹,例如“chainlit_fastgpt”

mkdir chainlit_fastgpt

进入 chainlit_chat文件夹下,执行命令创建python 虚拟环境空间(需要提前安装好python sdkChainlit 需要python>=3.8。,具体操作,由于文章长度问题就不在叙述,自行百度),命令如下:

python -m venv .venv
  • 这一步是避免python第三方库冲突,省事版可以跳过
  • .venv是创建的虚拟空间文件夹可以自定义

接下来激活你创建虚拟空间,命令如下:

#linux or mac
source .venv/bin/activate
#windows
.venv\Scripts\activate

在项目根目录下创建requirements.txt,内容如下:

chainlit~=1.1.402
aiohttp~=3.10.5
requests~=2.32.3
literalai~=0.0.607

在项目根目录下创建app.py文件,代码如下:

import hashlib
import json
import os
from typing import Optional, Dictimport aiohttp
import chainlit as cl
import chainlit.data as cl_data
import requestsfrom fastgpt_data import FastgptDataLayer, now, share_id, app_name, welcome_textfastgpt_base_url = os.getenv("FASTGPT_BASE_URL")
fastgpt_api_key = os.getenv("FASTGPT_API_KEY")
fastgpt_api_detail = os.getenv("FASTGPT_API_DETAIL", False)cl_data._data_layer = FastgptDataLayer()
cl.config.ui.name = app_namedef download_logo():local_filename = "./public/favicon.svg"directory = os.path.dirname(local_filename)os.makedirs(directory, exist_ok=True)# Streaming, so we can iterate over the response.with requests.get(f"{fastgpt_base_url}/icon/logo.svg", stream=True) as r:r.raise_for_status()  # Check if the request was successfulwith open(local_filename, 'wb') as f:for chunk in r.iter_content(chunk_size=8192):# If you have chunk encoded response uncomment if# and set chunk_size parameter to None.f.write(chunk)download_logo()@cl.on_chat_start
async def chat_start():if welcome_text:# elements = [cl.Text(content=welcomeText, display="inline")]await cl.Message(content=welcome_text).send()@cl.on_message
async def handle_message(message: cl.Message):msg = cl.Message(content="")url = f"{fastgpt_base_url}/api/v1/chat/completions"print('message.thread_id',message.thread_id)headers = {"Authorization": f"Bearer {fastgpt_api_key}","Content-Type": "application/json"}data = {"messages": [{"role": "user","content": message.content}],"variables": {"cTime": now},"responseChatItemId": message.id,"shareId": share_id,"chatId": message.thread_id,"appType": "advanced","outLinkUid": cl.context.session.user.identifier,"detail": fastgpt_api_detail,"stream": True}async for data in fetch_sse(url, headers=headers, data=json.dumps(data), detail=fastgpt_api_detail):delta = data['choices'][0]['delta']if delta:await msg.stream_token(delta['content'])await msg.send()@cl.header_auth_callback
def header_auth_callback(headers: Dict) -> Optional[cl.User]:print(headers)# 创建一个md5 hash对象md5_hash = hashlib.md5()user_agent_bytes = headers.get('user-agent').encode('utf-8')# 更新这个hash对象的内容md5_hash.update(user_agent_bytes)# 获取md5哈希值的十六进制表示形式md5_hex_digest = md5_hash.hexdigest()out_link_uid = md5_hex_digestprint("MD5加密后的结果:", md5_hex_digest)return cl.User(identifier=out_link_uid, display_name="visitor")@cl.on_chat_resume
async def on_chat_resume():passasync def fetch_sse(url, headers, data, detail):async with aiohttp.ClientSession() as session:async with session.post(url, headers=headers, data=data) as response:async for line in response.content:if line:  # 过滤掉空行data = line.decode('utf-8').rstrip('\n\r')# print(f"Received: {data}")# 检查是否为数据行,并且是我们感兴趣的事件类型if detail:if data.startswith('event:'):event_type = data.split(':', 1)[1].strip()  # 提取事件类型elif data.startswith('data:') and event_type == 'flowNodeStatus':data = data.split(':', 1)[1].strip()flowNodeStatus = json.loads(data)current_step = cl.context.current_stepcurrent_step.name = flowNodeStatus['name']elif data.startswith('data:') and event_type == 'answer':data = data.split(':', 1)[1].strip()  # 提取数据内容# 如果数据包含换行符,可能需要进一步处理(这取决于你的具体需求)# 这里我们简单地打印出来if data != '[DONE]':yield json.loads(data)else:if data.startswith('data:'):data = data.split(':', 1)[1].strip()  # 提取数据内容# 如果数据包含换行符,可能需要进一步处理(这取决于你的具体需求)# 这里我们简单地打印出来if data != '[DONE]':yield json.loads(data)
  • 传入的model,temperature等参数字段均无效,这些字段由编排决定,不会根据 API 参数改变。

  • 不会返回实际消耗Token值,如果需要,可以设置detail=true,并手动计算 responseData 里的tokens值。

在项目根目录下创建fastgpt_data.py文件,代码如下:

import json
import os
import uuid
from typing import Optional, List, Dictimport requests
from chainlit import PersistedUser
from chainlit.data import BaseDataLayer
from chainlit.types import PageInfo, ThreadFilter, ThreadDict, Pagination, PaginatedResponse
from literalai.helper import utc_nowfastgpt_base_url = os.getenv("FASTGPT_BASE_URL")
share_id = os.getenv("FASTGPT_SHARE_ID")
now = utc_now()
user_cur_threads = []
thread_user_dict = {}def change_type(user_type: str):if user_type == 'AI':return 'assistant_message'if user_type == 'Human':return 'user_message'def get_app_info():with requests.get(f"{fastgpt_base_url}/api/core/chat/outLink/init?chatId=&shareId={share_id}&outLinkUid=123456") as resp:app = {}if resp.status_code == 200:res = json.loads(resp.content)app = res.get('data').get('app')appId = res.get('data').get('appId')app['id'] = appIdreturn appapp_info = get_app_info()app_id = app_info.get('id')
app_name = app_info.get('name')
welcome_text = app_info.get('chatConfig').get('welcomeText')def getHistories(user_id):histories = []if user_id:with requests.post(f"{fastgpt_base_url}/api/core/chat/getHistories",data={"shareId": share_id, "outLinkUid": user_id}) as resp:if resp.status_code == 200:res = json.loads(resp.content)data = res["data"]print(data)histories = [{"id": item["chatId"],"name": item["title"],"createdAt": item["updateTime"],"userId": user_id,"userIdentifier": user_id}for item in data]if user_cur_threads:thread = next((t for t in user_cur_threads if t["userId"] == user_id), None)if thread:  # 确保 thread 不为 Nonethread_id = thread.get("id")if histories:# 检查 thread 的 ID 是否已存在于 threads 中if not any(t.get("id") == thread_id for t in histories):histories.insert(0, thread)else:# 如果 threads 是空列表,则直接插入 threadhistories.insert(0, thread)for item in histories:thread_user_dict[item.get('id')] = item.get('userId')return historiesclass FastgptDataLayer(BaseDataLayer):async def get_user(self, identifier: str):print('get_user', identifier)return PersistedUser(id=identifier, createdAt=now, identifier=identifier)async def update_thread(self,thread_id: str,name: Optional[str] = None,user_id: Optional[str] = None,metadata: Optional[Dict] = None,tags: Optional[List[str]] = None,):print('---------update_thread----------',thread_id)thread = next((t for t in user_cur_threads if t["userId"] == user_id), None)if thread:if thread_id:thread["id"] = thread_idif name:thread["name"] = nameif user_id:thread["userId"] = user_idthread["userIdentifier"] = user_idif metadata:thread["metadata"] = metadataif tags:thread["tags"] = tagsthread["createdAt"] = utc_now()else:print('---------update_thread----------thread_id ', thread_id, name)user_cur_threads.append({"id": thread_id,"name": name,"metadata": metadata,"tags": tags,"createdAt": utc_now(),"userId": user_id,"userIdentifier": user_id,})async def get_thread_author(self, thread_id: str):print('get_thread_author')return thread_user_dict.get(thread_id, None)async def list_threads(self, pagination: Pagination, filters: ThreadFilter) -> PaginatedResponse[ThreadDict]:threads = []if filters:threads = getHistories(filters.userId)search = filters.search if filters.search else ""filtered_threads = [thread for thread in threads if search in thread.get('name', '')]start = 0if pagination.cursor:for i, thread in enumerate(filtered_threads):if thread["id"] == pagination.cursor:  # Find the start index using pagination.cursorstart = i + 1breakend = start + pagination.firstpaginated_threads = filtered_threads[start:end] or []has_next_page = len(paginated_threads) > endstart_cursor = paginated_threads[0]["id"] if paginated_threads else Noneend_cursor = paginated_threads[-1]["id"] if paginated_threads else Nonereturn PaginatedResponse(pageInfo=PageInfo(hasNextPage=has_next_page,startCursor=start_cursor,endCursor=end_cursor,),data=paginated_threads,)async def get_thread(self, thread_id: str):print('get_thread', thread_id)user_id = thread_user_dict.get(thread_id, None)thread = Noneif user_id:params = {'chatId': thread_id,'shareId': share_id,'outLinkUid': user_id,}with requests.get(f"{fastgpt_base_url}/api/core/chat/outLink/init",params=params,) as resp:if resp.status_code == 200:res = json.loads(resp.content)data = res["data"]if data:history = data['history']files = []texts = []for item in history:for entry in item['value']:if entry.get('type') == 'text':text = {"id": item["_id"],"threadId": thread_id,"name": item["obj"],"type": change_type(item["obj"]),"input": None,"createdAt": utc_now(),"output": entry.get('text').get('content'),}texts.append(text)if entry.get('type') == 'file':file = {"id": str(uuid.UUID),"threadId": thread_id,"forId": item["_id"],"name": entry.get('file').get('name'),"type": entry.get('file').get('type'),"url": entry.get('file').get('url'),"display": "inline","size": "medium"}files.append(file)thread = {"id": thread_id,"name": data.get("title", ''),"createdAt": utc_now(),"userId": "admin","userIdentifier": "admin","metadata": {"appId": data["appId"]},"steps": texts,"elements": files,}return threadreturn threadasync def delete_thread(self, thread_id: str):print('delete_thread')thread = next((t for t in user_cur_threads if t["id"] == thread_id), None)user_id = thread_user_dict.get(thread_id, None)if thread:user_cur_threads.remove(thread)if user_id:params = {'appId': app_id,'chatId': thread_id,'shareId': share_id,'outLinkUid': user_id,}requests.get(f"{fastgpt_base_url}/api/core/chat/delHistory",params=params)

在项目根目录下创建.env环境变量,配置如下:

CHAINLIT_AUTH_SECRET="xOIPIMBGfI7N*VK6O~KOVIRC/cGRNSmk%bmO4Q@el647hR?^mdW6=8KlQBuWWTbk"
FASTGPT_BASE_URL="https://share.fastgpt.in"
FASTGPT_API_KEY="fastgpt-key"
FASTGPT_SHARE_ID=""
FASTGPT_API_DETAIL=False
  • 项目根目录下,执行 chainlit create-secret命令,可以获得CHAINLIT_AUTH_SECRET
  • FASTGPT_BASE_URL 为你Fastgpt服务器,网页端分享地址的的base_url
  • FASTGPT_API_KEY 为你Fastgpt服务器f发布渠道中->API访问的密匙。
  • FASTGPT_SHARE_ID 为你Fastgpt服务器f发布渠道中->免登录窗口中的url的中参数shareId=后面的值。

执行以下命令安装依赖:

pip install -r .\requirements.txt
  • 安装后,项目根目录下会多出.chainlit.files文件夹和chainlit.md文件

运行应用程序

要启动 Chainlit 应用程序,请打开终端并导航到包含的目录app.py。然后运行以下命令:

 chainlit run app.py -w   
  • -w标志告知 Chainlit 启用自动重新加载,因此您无需在每次更改应用程序时重新启动服务器。您的聊天机器人 UI 现在应该可以通过http://localhost:8000访问。
  • 自定义端口可以追加--port 80

启动后界面如下:
在这里插入图片描述

  • 由于时间关系,这个应用和fastgpt的文件上传接口、语音对话还未实现,后续会在更新一次,实现完美对接!

相关文章推荐

《使用 Xinference 部署本地模型》
《Fastgpt接入Whisper本地模型实现语音输入》
《Fastgpt部署和接入使用重排模型bge-reranker》
《Fastgpt部署接入 M3E和chatglm2-m3e文本向量模型》
《Fastgpt 无法启动或启动后无法正常使用的讨论(启动失败、用户未注册等问题这里)》
《vllm推理服务兼容openai服务API》
《vLLM模型推理引擎参数大全》
《解决vllm推理框架内在开启多显卡时报错问题》
《Ollama 在本地快速部署大型语言模型,可进行定制并创建属于您自己的模型》

这篇关于Chainlit接入FastGpt接口完美对接,实现全新的用户聊天界面的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1106818

相关文章

基于C++的UDP网络通信系统设计与实现详解

《基于C++的UDP网络通信系统设计与实现详解》在网络编程领域,UDP作为一种无连接的传输层协议,以其高效、低延迟的特性在实时性要求高的应用场景中占据重要地位,下面我们就来看看如何从零开始构建一个完整... 目录前言一、UDP服务器UdpServer.hpp1.1 基本框架设计1.2 初始化函数Init详解

Java中Map的五种遍历方式实现与对比

《Java中Map的五种遍历方式实现与对比》其实Map遍历藏着多种玩法,有的优雅简洁,有的性能拉满,今天咱们盘一盘这些进阶偏基础的遍历方式,告别重复又臃肿的代码,感兴趣的小伙伴可以了解下... 目录一、先搞懂:Map遍历的核心目标二、几种遍历方式的对比1. 传统EntrySet遍历(最通用)2. Lambd

springboot+redis实现订单过期(超时取消)功能的方法详解

《springboot+redis实现订单过期(超时取消)功能的方法详解》在SpringBoot中使用Redis实现订单过期(超时取消)功能,有多种成熟方案,本文为大家整理了几个详细方法,文中的示例代... 目录一、Redis键过期回调方案(推荐)1. 配置Redis监听器2. 监听键过期事件3. Redi

SpringBoot全局异常拦截与自定义错误页面实现过程解读

《SpringBoot全局异常拦截与自定义错误页面实现过程解读》本文介绍了SpringBoot中全局异常拦截与自定义错误页面的实现方法,包括异常的分类、SpringBoot默认异常处理机制、全局异常拦... 目录一、引言二、Spring Boot异常处理基础2.1 异常的分类2.2 Spring Boot默

基于SpringBoot实现分布式锁的三种方法

《基于SpringBoot实现分布式锁的三种方法》这篇文章主要为大家详细介绍了基于SpringBoot实现分布式锁的三种方法,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录一、基于Redis原生命令实现分布式锁1. 基础版Redis分布式锁2. 可重入锁实现二、使用Redisso

SpringBoo WebFlux+MongoDB实现非阻塞API过程

《SpringBooWebFlux+MongoDB实现非阻塞API过程》本文介绍了如何使用SpringBootWebFlux和MongoDB实现非阻塞API,通过响应式编程提高系统的吞吐量和响应性能... 目录一、引言二、响应式编程基础2.1 响应式编程概念2.2 响应式编程的优势2.3 响应式编程相关技术

C#实现将XML数据自动化地写入Excel文件

《C#实现将XML数据自动化地写入Excel文件》在现代企业级应用中,数据处理与报表生成是核心环节,本文将深入探讨如何利用C#和一款优秀的库,将XML数据自动化地写入Excel文件,有需要的小伙伴可以... 目录理解XML数据结构与Excel的对应关系引入高效工具:使用Spire.XLS for .NETC

Nginx更新SSL证书的实现步骤

《Nginx更新SSL证书的实现步骤》本文主要介绍了Nginx更新SSL证书的实现步骤,包括下载新证书、备份旧证书、配置新证书、验证配置及遇到问题时的解决方法,感兴趣的了解一下... 目录1 下载最新的SSL证书文件2 备份旧的SSL证书文件3 配置新证书4 验证配置5 遇到的http://www.cppc

Nginx之https证书配置实现

《Nginx之https证书配置实现》本文主要介绍了Nginx之https证书配置的实现示例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起... 目录背景介绍为什么不能部署在 IIS 或 NAT 设备上?具体实现证书获取nginx配置扩展结果验证

SpringBoot整合 Quartz实现定时推送实战指南

《SpringBoot整合Quartz实现定时推送实战指南》文章介绍了SpringBoot中使用Quartz动态定时任务和任务持久化实现多条不确定结束时间并提前N分钟推送的方案,本文结合实例代码给大... 目录前言一、Quartz 是什么?1、核心定位:解决什么问题?2、Quartz 核心组件二、使用步骤1