Datawhale X 李宏毅苹果书 AI夏令营(深度学习入门)task3

2024-08-25 19:04

本文主要是介绍Datawhale X 李宏毅苹果书 AI夏令营(深度学习入门)task3,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

实践方法论

在应用机器学习算法时,实践方法论能够帮助我们更好地训练模型。如果在 Kaggle 上的结果不太好,虽然 Kaggle 上呈现的是测试数据的结果,但要先检查训练数据的损失。看看模型在训练数据上面,有没有学起来,再去看测试的结果,如果训练数据的损失很大,显然它在训练集上面也没有训练好。接下来再分析一下在训练集上面没有学好的原因。

1.模型的偏差

模型偏差可能会影响模型训练。举个例子,假设模型过于简单,一个有未知参数的函数代θ1 得到一个函数f_{\Theta1 }(x),同理可得到另一个函数f_{\Theta 2}(x),把所有的函数集合起来得到一个函数的集合。但是该函数的集合太小了,没有包含任何一个函数,可以让损失变低的函数不在模型可以描述的范围内。在这种情况下,就算找出了一个\Theta ^{*},虽然它是这些蓝色的函数里面最好的一个,但损失还是不够低。这种情况就是想要在大海里面捞针(一个损失低的函数),结果针根本就不在海里。

这时我们就需要训练一个新的模型,更好的解决模型没有得到损失很小的问题。

除了模型偏差会影响模型训练外,优化问题也会影响损失的降低

2.优化

一般只会用到梯度下降进行优化,这种优化的方法很多的问题。比如可能会卡在局部最小值的地方,无法找到一个真的可以让损失很低的参数

但是我们有时可能并不能判断出具体是因为模型偏差还是优化方法出了问题,还是说模型太小了不够训练出最好的参数

残差网络的论文中给出了一个建议,通过比较不同的模型来判断

下面这个图,就生动的展示了一个20层的神经网络和56层神经网络在同一个测试集和训练集的表现

但是56层的模型却不如20层的表现好,56层的网络还没有20层的误差小。多余的36层网络相当于做了无用功

如果训练数据上面的损失小,测试数据上的损失大,可能是真的过拟合。在测试上的结果不好,不一定是过拟合。要把训练数据损失记下来,先确定优化没有问题,模型够大了。接下来才看看是不是测试的问题,如果是训练损失小,测试损失大,这个有可能是过拟合。

3.过拟合

过拟合是由于模型使用了太多的特征使得模型将部分数据的“特性”也学习到,使得模型的泛化能力较弱

那么怎么解决过拟合问题呢?下面一起来讨论一下

3.1增加数据

根据问题的理解创造出新的数据,举个例子,在做图像识别的时候,常做的一个招式是,假设训练集里面有某一张图片,把它左右翻转,或者是把它其中一块截出来放大等等。对图片进行左右翻转,数据就变成两倍。但是注意不能把图片进行上下翻转,因为他不是我们想要的一个合理的图片,可能会使机器学习到奇怪的特征

3.2限制模型

3.2.1使用较少的特征,增强模型的泛化能力

3.2.2使用较少的参数

如果是深度学习,我们可以给他较少的神经元本来每层一千个神经元,改成一百个神经元之类的,或者让模型共享参数。

卷积神经网络(Convolutional Neural Network,CNN)是一个比较有限制的架构。CNN 是一种比较没有灵活性的模型,其是针对图像的特性来限制模型的灵活性。所以全连接神经网络,可以找出来的函数所形成的集合其实是比较大的,CNN 所找出来的函数,它形成的集合其实是比较小的,其实包含在全连接网络里面的,但是就是因为CNN 给了比较大的限制,所以 CNN 在图像上,反而会做得比较好

3.2.3正则化

3.2.4Dropout

但是也不能给出太多的限制,限制太多可能会使模型根本拟合不了,如下图所示

4交叉验证

比较合理选择模型的方法是把训练的数据分成两半,一部分称为训练集(training set),一部分是验证集(validation set)。比如 90% 的数据作为训练集,有 10% 的数据作为验证集。在训练集上训练出来的模型会使用验证集来衡量它们的分数,根据验证集上面的分数去挑选结果。

把数据分为3个,每次有两个训练集一个验证集,循环跑三次,可以得出哪些数据得出的结果更好

数据分为k类就叫做k-折交叉验证

5.不匹配

李老师获取到正式的视频观看次数,与使用模型预测出来的结果做了对比,得出了下面这个折线图。很明显发现2.26这天的数据预测值和真实值之间的差距很大,导致了不匹配的现象

但是匹不匹配要看对数据本身的理解了,我们可能要对训练集跟测试集的产生方式有一些理解,才能判断它是不是遇到了不匹配的情况。

这篇关于Datawhale X 李宏毅苹果书 AI夏令营(深度学习入门)task3的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1106390

相关文章

从入门到精通MySQL联合查询

《从入门到精通MySQL联合查询》:本文主要介绍从入门到精通MySQL联合查询,本文通过实例代码给大家介绍的非常详细,需要的朋友可以参考下... 目录摘要1. 多表联合查询时mysql内部原理2. 内连接3. 外连接4. 自连接5. 子查询6. 合并查询7. 插入查询结果摘要前面我们学习了数据库设计时要满

深度解析Java DTO(最新推荐)

《深度解析JavaDTO(最新推荐)》DTO(DataTransferObject)是一种用于在不同层(如Controller层、Service层)之间传输数据的对象设计模式,其核心目的是封装数据,... 目录一、什么是DTO?DTO的核心特点:二、为什么需要DTO?(对比Entity)三、实际应用场景解析

深度解析Java项目中包和包之间的联系

《深度解析Java项目中包和包之间的联系》文章浏览阅读850次,点赞13次,收藏8次。本文详细介绍了Java分层架构中的几个关键包:DTO、Controller、Service和Mapper。_jav... 目录前言一、各大包1.DTO1.1、DTO的核心用途1.2. DTO与实体类(Entity)的区别1

从入门到精通C++11 <chrono> 库特性

《从入门到精通C++11<chrono>库特性》chrono库是C++11中一个非常强大和实用的库,它为时间处理提供了丰富的功能和类型安全的接口,通过本文的介绍,我们了解了chrono库的基本概念... 目录一、引言1.1 为什么需要<chrono>库1.2<chrono>库的基本概念二、时间段(Durat

深度解析Python装饰器常见用法与进阶技巧

《深度解析Python装饰器常见用法与进阶技巧》Python装饰器(Decorator)是提升代码可读性与复用性的强大工具,本文将深入解析Python装饰器的原理,常见用法,进阶技巧与最佳实践,希望可... 目录装饰器的基本原理函数装饰器的常见用法带参数的装饰器类装饰器与方法装饰器装饰器的嵌套与组合进阶技巧

解析C++11 static_assert及与Boost库的关联从入门到精通

《解析C++11static_assert及与Boost库的关联从入门到精通》static_assert是C++中强大的编译时验证工具,它能够在编译阶段拦截不符合预期的类型或值,增强代码的健壮性,通... 目录一、背景知识:传统断言方法的局限性1.1 assert宏1.2 #error指令1.3 第三方解决

深度解析Spring Boot拦截器Interceptor与过滤器Filter的区别与实战指南

《深度解析SpringBoot拦截器Interceptor与过滤器Filter的区别与实战指南》本文深度解析SpringBoot中拦截器与过滤器的区别,涵盖执行顺序、依赖关系、异常处理等核心差异,并... 目录Spring Boot拦截器(Interceptor)与过滤器(Filter)深度解析:区别、实现

深度解析Spring AOP @Aspect 原理、实战与最佳实践教程

《深度解析SpringAOP@Aspect原理、实战与最佳实践教程》文章系统讲解了SpringAOP核心概念、实现方式及原理,涵盖横切关注点分离、代理机制(JDK/CGLIB)、切入点类型、性能... 目录1. @ASPect 核心概念1.1 AOP 编程范式1.2 @Aspect 关键特性2. 完整代码实

SpringBoot开发中十大常见陷阱深度解析与避坑指南

《SpringBoot开发中十大常见陷阱深度解析与避坑指南》在SpringBoot的开发过程中,即使是经验丰富的开发者也难免会遇到各种棘手的问题,本文将针对SpringBoot开发中十大常见的“坑... 目录引言一、配置总出错?是不是同时用了.properties和.yml?二、换个位置配置就失效?搞清楚加

从入门到精通MySQL 数据库索引(实战案例)

《从入门到精通MySQL数据库索引(实战案例)》索引是数据库的目录,提升查询速度,主要类型包括BTree、Hash、全文、空间索引,需根据场景选择,建议用于高频查询、关联字段、排序等,避免重复率高或... 目录一、索引是什么?能干嘛?核心作用:二、索引的 4 种主要类型(附通俗例子)1. BTree 索引(