基于环形队列的多生产多消费模型

2024-08-25 16:44

本文主要是介绍基于环形队列的多生产多消费模型,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Linux中信号量相关接口及环形队列-CSDN博客icon-default.png?t=N7T8https://blog.csdn.net/2301_77479435/article/details/141411372

main.cc

#include"RingQueue.hpp"
#include"Task.hpp"
#include<pthread.h>
#include<ctime>
#include<cstdlib>
#include<sys/types.h>
#include<unistd.h>string SelfName()
{char name[128];snprintf(name,sizeof name,"thread[0x%x]",pthread_self());return name;
}//生产者线程和消费者线程那个限制性无法确定
void* ProductorRoutine(void* rq)
{RingQueue<Task>*ringqueue =static_cast<RingQueue<Task>* >(rq);while(true){//version1// int data=rand()%10+1;// ringqueue->Push(data);// cout<<"生产完成,生产的数据为: "<<data<<endl;//version2//构建任务int x=rand()%10;int y=rand()%5;char op=oper[rand()%oper.size()];Task t(x,y,op,mymath);//生产任务ringqueue->Push(t);//输出提示cout<<SelfName()<<", 生产者派发了一个任务: "<<t.toTaskString()<<endl;sleep(1);}
}
void* ConsumerRoutine(void* rq)
{RingQueue<Task>* ringqueue=static_cast<RingQueue<Task>* >(rq);while(true){//version1//  int data;//  ringqueue->Pop(&data);//  cout<<"消费完成, 消费的数据为: "<<data<<endl;Task t;ringqueue->Pop(&t);string result=t();cout<<SelfName()<<", 消费者消费了一个任务: "<<result<<endl;}
}
int main()
{srand((unsigned int)time(nullptr));RingQueue<Task>* rq=new RingQueue<Task>();//单生产,单消费,多生产,多消费 --> 只要保证,最终进入临界区的是一个生产,一个消费就行!!!pthread_t p[4],c[8];for(int i=0;i<4;i++)pthread_create(p+i,nullptr,ProductorRoutine,rq);for(int i=0;i<8;i++)pthread_create(c+i,nullptr,ConsumerRoutine,rq);for(int i=0;i<4;i++)pthread_join(p[i],nullptr);for(int i=0;i<8;i++)pthread_join(c[i],nullptr);delete rq;return 0;
}

Ringqueue.hpp

#pragma once#include<cassert>
#include<iostream>
#include<vector>
#include<semaphore.h>
#include<pthread.h>static const int gcap=5;
using namespace std;
template<class T>
class RingQueue
{void P(sem_t &sem){int n=sem_wait(&sem);assert(n==0);}void V(sem_t &sem){int n=sem_post(&sem);assert(n==0);}
public:RingQueue(const int& cap=gcap):_queue(cap),_cap(cap){int n=sem_init(&_spaceSem,0,_cap);assert(n==0);n=sem_init(&_dataSem,0,0);assert(n==0);_productorStep=_consumerStep=0;pthread_mutex_init(&_pmutex,nullptr);pthread_mutex_init(&_cmutex,nullptr);}//优化:提高信号量的并发度void Push(const T &in){P(_spaceSem);//申请到了空间信号量,意味着能进行正常生产pthread_mutex_lock(&_pmutex);//生产者生产时因保证环形队列不能为满_queue[_productorStep++]=in;_productorStep%=_cap;      pthread_mutex_unlock(&_pmutex);V(_dataSem);}void Pop(T* out){ P(_dataSem);pthread_mutex_lock(&_cmutex);    *out=_queue[_consumerStep++];_consumerStep%=_cap; pthread_mutex_unlock(&_cmutex);V(_spaceSem);}~RingQueue(){sem_destroy(&_spaceSem);sem_destroy(&_dataSem);pthread_mutex_destroy(&_pmutex);pthread_mutex_destroy(&_cmutex);}
private:vector<T> _queue;int _cap;//队列容量sem_t _spaceSem;//生产者看重空间资源sem_t _dataSem;//消费者看重数据资源int _productorStep;int _consumerStep;pthread_mutex_t _pmutex;pthread_mutex_t _cmutex;
};

Task.hpp

#pragma once#include<cstdio>
#include<iostream>
#include<string>
#include<functional>using namespace std;
class Task
{using func_t=function<int(int,int,char)>;//typedef function<int(int,int)> func_t;
public:Task(){}Task(int x,int y,char op,func_t func):_x(x),_y(y),_op(op),_callback(func){}string operator()(){int result=_callback(_x,_y,_op);//构建结构字符串char buffer[1024];snprintf(buffer,sizeof buffer,"%d %c %d = %d ",_x,_op,_y,result);return buffer;}string toTaskString(){char buffer[1024];snprintf(buffer,sizeof buffer,"%d %c %d = ? ",_x,_op,_y);return buffer;}
private:int _x;int _y;char _op;func_t _callback;
};
const string oper="+-*/";
int mymath(int x,int y,char op)
{int result=0;switch(op){case '+':result=x+y;break;case '-':result=x-y;break;case '*':result=x*y;break;case '/':{if(y==0){cerr<<"div zero error!!!"<<endl;result=-1;}elseresult=x/y;}break;case '%':{if(y==0){cerr<<"mod zero error!!!"<<endl;result=-1;}elseresult=x%y;}          break;default:break;}return result;
}
class SaveTask
{typedef function<void(const string&)> func_t;
public:SaveTask(){}SaveTask(const string &message,func_t func):_message(message),_func(func){}void operator()(){_func(_message);}
private:string _message;func_t _func;
};
void Save(const string& message)
{const string target="./log.txt";FILE* fp=fopen(target.c_str(),"a+");if(!fp){cerr<<" fopen error "<<endl;return;} fputs(message.c_str(),fp);fputs("\n",fp);fclose(fp);
}

这篇关于基于环形队列的多生产多消费模型的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1106098

相关文章

Java中常见队列举例详解(非线程安全)

《Java中常见队列举例详解(非线程安全)》队列用于模拟队列这种数据结构,队列通常是指先进先出的容器,:本文主要介绍Java中常见队列(非线程安全)的相关资料,文中通过代码介绍的非常详细,需要的朋... 目录一.队列定义 二.常见接口 三.常见实现类3.1 ArrayDeque3.1.1 实现原理3.1.2

详解如何使用Python从零开始构建文本统计模型

《详解如何使用Python从零开始构建文本统计模型》在自然语言处理领域,词汇表构建是文本预处理的关键环节,本文通过Python代码实践,演示如何从原始文本中提取多尺度特征,并通过动态调整机制构建更精确... 目录一、项目背景与核心思想二、核心代码解析1. 数据加载与预处理2. 多尺度字符统计3. 统计结果可

C++ RabbitMq消息队列组件详解

《C++RabbitMq消息队列组件详解》:本文主要介绍C++RabbitMq消息队列组件的相关知识,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录1. RabbitMq介绍2. 安装RabbitMQ3. 安装 RabbitMQ 的 C++客户端库4. A

SpringBoot整合Sa-Token实现RBAC权限模型的过程解析

《SpringBoot整合Sa-Token实现RBAC权限模型的过程解析》:本文主要介绍SpringBoot整合Sa-Token实现RBAC权限模型的过程解析,本文给大家介绍的非常详细,对大家的学... 目录前言一、基础概念1.1 RBAC模型核心概念1.2 Sa-Token核心功能1.3 环境准备二、表结

golang实现延迟队列(delay queue)的两种实现

《golang实现延迟队列(delayqueue)的两种实现》本文主要介绍了golang实现延迟队列(delayqueue)的两种实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的... 目录1 延迟队列:邮件提醒、订单自动取消2 实现2.1 simplChina编程e简单版:go自带的time

Java的栈与队列实现代码解析

《Java的栈与队列实现代码解析》栈是常见的线性数据结构,栈的特点是以先进后出的形式,后进先出,先进后出,分为栈底和栈顶,栈应用于内存的分配,表达式求值,存储临时的数据和方法的调用等,本文给大家介绍J... 目录栈的概念(Stack)栈的实现代码队列(Queue)模拟实现队列(双链表实现)循环队列(循环数组

Redis消息队列实现异步秒杀功能

《Redis消息队列实现异步秒杀功能》在高并发场景下,为了提高秒杀业务的性能,可将部分工作交给Redis处理,并通过异步方式执行,Redis提供了多种数据结构来实现消息队列,总结三种,本文详细介绍Re... 目录1 Redis消息队列1.1 List 结构1.2 Pub/Sub 模式1.3 Stream 结

SpringKafka错误处理(重试机制与死信队列)

《SpringKafka错误处理(重试机制与死信队列)》SpringKafka提供了全面的错误处理机制,通过灵活的重试策略和死信队列处理,下面就来介绍一下,具有一定的参考价值,感兴趣的可以了解一下... 目录引言一、Spring Kafka错误处理基础二、配置重试机制三、死信队列实现四、特定异常的处理策略五

Spring Security基于数据库的ABAC属性权限模型实战开发教程

《SpringSecurity基于数据库的ABAC属性权限模型实战开发教程》:本文主要介绍SpringSecurity基于数据库的ABAC属性权限模型实战开发教程,本文给大家介绍的非常详细,对大... 目录1. 前言2. 权限决策依据RBACABAC综合对比3. 数据库表结构说明4. 实战开始5. MyBA

Java的IO模型、Netty原理解析

《Java的IO模型、Netty原理解析》Java的I/O是以流的方式进行数据输入输出的,Java的类库涉及很多领域的IO内容:标准的输入输出,文件的操作、网络上的数据传输流、字符串流、对象流等,这篇... 目录1.什么是IO2.同步与异步、阻塞与非阻塞3.三种IO模型BIO(blocking I/O)NI