【数据结构】二叉树顺序结构之堆的实现

2024-08-23 23:20

本文主要是介绍【数据结构】二叉树顺序结构之堆的实现,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1. 前言 

普通的二叉树是不适合用数组来存储的,因为可能会存在大量的空间浪费。而完全二叉树更适合使用顺序结构存储。现实中我们通常把堆 ( 一种二叉树 ) 使用顺序结构的数组来存储,需要注意的是这里的堆和操作系统 虚拟进程地址空间中的堆是两回事,一个是数据结构,一个是操作系统中管理内存的一块区域分段。

2. 堆的概念及结构

堆是一种特殊的数据结构,简单理解,它能将所有元素按完全二叉树的顺序存储方式存储
在一个一维数组中,堆可以分为大堆小堆两种形式。

将根节点最大的堆叫做最大堆或大根堆,根节点最小的堆叫做最小堆或小根堆。

堆的性质:

①:堆的父节点的值总是大于或等于其子节点的值(大顶堆)或者小于或等于其子节点的值(小顶堆)。
②:堆是完全二叉树,即除了最底层外,其他层的节点都是满的,并且最底层的节点都尽量靠左排列。

如下图所示就是大堆和小堆的逻辑结构和存储结构啦~ 

3. 堆的实现

下文以大堆为例,接下来我们一起来学习如何实现堆的结构

3.1 准备工作

还是像往常一样,我们将队列其拆分为不同的文件进行设计

1️⃣:Heap.h 文件,用于函数声明

2️⃣:Heap.c 文件,用于函数的定义

3️⃣:Test.c   文件,用于测试函数

3.2 结构体的定义

堆的物理本质是一个数组,就可以像动态顺序表一样进行结构定义。

typedef int HPDataType;
typedef struct Heap
{HPDataType* a;int size; // 有效元素个数int capacity; // 数组长度
}HP;

3.3 堆的初始化

初始化有两种方式:
① 初始化时我们可以为数组开辟一定大小空间。

② 我们也可以直接将数组指针先置为空指针,插入数据过程中在进一步处理。

代码如下:我们采用的是第二种实现方式

void HeapInit(HP* php)
{assert(php);php->a = NULL;php->size = php->capacity = 0;
}

   

3.4 堆的销毁

顺序表空间连续,所以只要free(首地址)就可以。

注意:不能忘记 hp->capacity = hp->size = 0;

代码如下:

void HPDestroy(HP* php)
{assert(php);free(php->a);php->a = NULL;php->size = php->capacity = 0;
}

 3.5 堆的插入

① 在插入数据前,我们首先要判断是否要扩容的问题。由于前面初始化时我们直接置空,所以我们先判断容量是否为空。如果为空开4个空间,否则空间扩大到原来的2倍。为空时,第一次具体开辟多少空间读者可自行选择,我们默认开辟4个字节
② 接下来就是插入数据了!但有一个问题,直接插入数据可能会破坏堆的结构,所以我们采用了向上调整算法。

实现代码如下: 

void HPPush(HP* php, HPDataType x)
{assert(php);// 判断扩容if (php->size == php->capacity){// 扩容size_t newcapacity = ph->capacity == 0 ? 4 : 2 * php->capacity;HPDataType* tmp = realloc(php->a, newcapacity * sizeof(HPDataType));if (tmp == NULL){// 扩容失败printf("realloc fail\n");exit(-1);}php->capacity = newcapacity;php->a = tmp;}// 数组尾插数据php->a[php->size++] = x;// 向上调整// 参数: 堆数组,插入位置下标AdjustUp(php->a, php->size - 1);
}

3.5.1 向上调整算法

当我们在一个堆的末尾插入一个数据后,需要对堆进行调整,使其仍然是一个堆,

这时需要用到堆的向上调整算法。

向上调整算法的基本思想(以建小堆为例):

  1. 插入数据
  2. 与自己的父亲比较
  3. 交换/不交换
  4. 交换:孩子来到父亲位置,父亲来到自己父亲的位置
  5. 结束循环两个点:
  • 不交换(跳出循环)
  • 一直交换直到来到根节点>0

🌟Tips: 同学们需要记住父节点和孩子节点之间的数量关系

leftchild = parent *2 + 1  左孩子节点下标 = 父亲节点下标*2 + 1
rightchild = parent * 2 + 2  右孩子节点下标 = 父亲节点下标*2 + 2
parent = (child - 1) / 2   父亲节点下标 = (孩子节点下标 - 1)/ 2

如:

举个例子:

现在我们给出一个数组[70, 30, 56, 25, 15, 10],逻辑上就要把他看作一颗完全二叉树。

int array[] = {70, 30, 56, 25, 15, 10};

如果我们插入的是8,8是最小值,他就保证小堆结构不发生变化

如果我们插入的比堆顶元素小,比如插入60, 我们发现60比它的根节点56大,

这时我们就要使用向上调整算法,调到合适位置即可

父亲比孩子小,交换元素。 

 

如果插入元素比根节点大,比如插入80

  

  使用向上调整算法

   

继续调整

   

代码如下: 

// 向上调整算法  此处以大堆为例
void AdjustUp(HPDataType* a, int child)
{assert(a);int parent = (child - 1) / 2;// 结束条件如果是parent>=0,会进入到下一个循环通过break跳出while (child > 0) {if (a[parent] < a[child]){// 父亲结点值小于孩子结点Swap(&a[parent], &a[child]);child = parent;parent = (child - 1) / 2;}else{break;}}
}

 3.5.2 向上调整法时间复杂度计算

可得高度与向上调整的关系 F(h)=2^h*(h-2)+2

时间复杂度F(N)=(N+1)*(log(N+1)-2)+2

3.6 删除堆顶元素

     把堆尾元素放到堆顶元素,然后去除堆尾元素(这里直接size--),再向下调整即可。因为原本就是一个堆,现在堆顶元素变了,所以直接向下调整。

代码如下:

void HPPop(HP* php)
{assert(php);assert(php->size > 0);Swap(&php->a[0], &php->a[php->size-1]);php->size--;AdjustDown(php->a, php->size, 0);
}

3.6.1 向下调整算法

当从堆中移除元素(通常是堆顶元素)后,为了维护堆的性质,需要对剩余的元素进行重新调整。向下调整法就是从父节点开始,通过与其子节点的比较和交换,确保父节点的值不大于(对于大根堆)或不小于(对于小根堆)其子节点的值。

步骤:

1. 删除堆顶元素
2. 堆顶元素与最后一个元素交换
3. 删除最后一个元素
4. 堆顶元素与左右两个孩子(最小/最大的孩子比较)
5. 判断交换/不交换
6. 交换:父亲来到孩子位置,孩子来到自己孩子的位置

判断条件:child + 1 < n && a[child + 1] < a[child]

结束循环条件:child < n(确保左孩子存在)

时间复杂度:O(logN),其中N是堆中元素的数量。

因为每次调整都涉及沿着树的一条路径向下移动,而树的深度为logN。

那么如何删除堆顶数据后插入数据呢?🤔🤔

如果直接挪动覆盖:操作的时间复杂度太大,而且父子关系就全乱了,不如重新建堆

在这里,以调整为小堆为例,给大家讲解向下调整算法的过程

 代码如下:

// 向下调整算法,这里默认是调整成小堆
void AdjustDown(int* a, int n, int parent)
{assert(a);int child = parent * 2 + 1; // 默认是左孩子while (child < n){// 找出小孩子if (child + 1 < n && a[child + 1] < a[child]){++child;}// 如果小孩子比父亲小,则交换,继续调整if (a[child] < a[parent]){Swap(&a[child], &a[parent]);parent = child;child = parent * 2 + 1;}else{break;}}
}

3.6.2 向下调整法的时间复杂度计算

可得高度与向下调整次数的关系 F(h)=2^{h}-h-1

可得时间复杂度:F(N) = N-log(N+1)

3.7 取堆顶元素

HPDataType HPTop(HP* php)
{assert(php);assert(php->size > 0);return php->a[0];
}

3.8 堆是否为空

bool HeapEmpty(HP* php)
{assert(php);return php->size == 0;
}

4. 参考代码 (如果发现上面代码有误,以这里为准)

Heap.h

#pragma once
#include <stdio.h>
#include <assert.h>
#include <stdlib.h>
#include <stdbool.h>typedef int HPDataType;typedef struct Heap
{HPDataType* a;int size;int capacity;
}HP;void Swap(HPDataType* p1, HPDataType* p2);
void AdjustUp(HPDataType* a, int child);
void AdjustDown(HPDataType* a, int n, int parent);void HPInit(HP* php);
void HPDestroy(HP* php);
void HPPush(HP* php, HPDataType x);
void HPPop(HP* php);
HPDataType HPTop(HP* php);
bool HPEmpty(HP* php);

Heap.c

#include"Heap.h"void HPInit(HP* php)
{assert(php);php->a = NULL;php->size = php->capacity = 0;
}void HPDestroy(HP* php)
{assert(php);free(php->a);php->a = NULL;php->size = php->capacity = 0;
}void Swap(HPDataType* p1, HPDataType* p2)
{HPDataType tmp = *p1;*p1 = *p2;*p2 = tmp;
}void AdjustUp(HPDataType* a, int child)
{// 初始条件// 中间过程// 结束条件int parent = (child - 1) / 2;//while (parent >= 0)while (child > 0){if (a[child] < a[parent]){Swap(&a[child], &a[parent]);child = parent;parent = (child - 1) / 2;}else{break;}}
}void HPPush(HP* php, HPDataType x)
{assert(php);if (php->size == php->capacity){int newcapacity = php->capacity == 0 ? 4 : php->capacity * 2;HPDataType* tmp = (HPDataType*)realloc(php->a, newcapacity * sizeof(HPDataType));if (tmp == NULL){perror("realloc fail");return;}php->a = tmp;php->capacity = newcapacity;}php->a[php->size] = x;php->size++;AdjustUp(php->a, php->size - 1);
}void AdjustDown(HPDataType* a, int n, int parent)
{// 先假设左孩子小int child = parent * 2 + 1;while (child < n)  // child >= n说明孩子不存在,调整到叶子了{// 找出小的那个孩子if (child + 1 < n && a[child + 1] < a[child]){++child;}if (a[child] < a[parent]){Swap(&a[child], &a[parent]);parent = child;child = parent * 2 + 1;}else{break;}}
}// logN
void HPPop(HP* php)
{assert(php);assert(php->size > 0);Swap(&php->a[0], &php->a[php->size-1]);php->size--;AdjustDown(php->a, php->size, 0);
}HPDataType HPTop(HP* php)
{assert(php);assert(php->size > 0);return php->a[0];
}bool HPEmpty(HP* php)
{assert(php);return php->size == 0;
}

Test.c

#include"Heap.h"void TestHeap1()
{int a[] = { 4,2,8,1,5,6,9,7,3,2,23,55,232,66,222,33,7,1,66,3333,999 };HP hp;HPInit(&hp);for (size_t i = 0; i < sizeof(a)/sizeof(int); i++){HPPush(&hp, a[i]);}int i = 0;while (!HPEmpty(&hp)){printf("%d ", HPTop(&hp));//a[i++] = HPTop(&hp);HPPop(&hp);}printf("\n");// 找出最大的前k个/*int k = 0;scanf("%d", &k);while (k--){printf("%d ", HPTop(&hp));HPPop(&hp);}printf("\n");*/HPDestroy(&hp);
}int main()
{TestHeap1();return 0;
}

以上就是这期博客的全部内容,

有同学们会有疑问:堆在实际问题的求解中有什么样的应用呢?

预知后事如何,请听下回分解,我们下期博客再来探讨~

希望这篇文章能给予你学习中一些帮助,如果有疑问的,欢迎在评论区与我讨论交流哦~

这篇关于【数据结构】二叉树顺序结构之堆的实现的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1100784

相关文章

SpringBoot集成redisson实现延时队列教程

《SpringBoot集成redisson实现延时队列教程》文章介绍了使用Redisson实现延迟队列的完整步骤,包括依赖导入、Redis配置、工具类封装、业务枚举定义、执行器实现、Bean创建、消费... 目录1、先给项目导入Redisson依赖2、配置redis3、创建 RedissonConfig 配

Python的Darts库实现时间序列预测

《Python的Darts库实现时间序列预测》Darts一个集统计、机器学习与深度学习模型于一体的Python时间序列预测库,本文主要介绍了Python的Darts库实现时间序列预测,感兴趣的可以了解... 目录目录一、什么是 Darts?二、安装与基本配置安装 Darts导入基础模块三、时间序列数据结构与

Python使用FastAPI实现大文件分片上传与断点续传功能

《Python使用FastAPI实现大文件分片上传与断点续传功能》大文件直传常遇到超时、网络抖动失败、失败后只能重传的问题,分片上传+断点续传可以把大文件拆成若干小块逐个上传,并在中断后从已完成分片继... 目录一、接口设计二、服务端实现(FastAPI)2.1 运行环境2.2 目录结构建议2.3 serv

C#实现千万数据秒级导入的代码

《C#实现千万数据秒级导入的代码》在实际开发中excel导入很常见,现代社会中很容易遇到大数据处理业务,所以本文我就给大家分享一下千万数据秒级导入怎么实现,文中有详细的代码示例供大家参考,需要的朋友可... 目录前言一、数据存储二、处理逻辑优化前代码处理逻辑优化后的代码总结前言在实际开发中excel导入很

SpringBoot+RustFS 实现文件切片极速上传的实例代码

《SpringBoot+RustFS实现文件切片极速上传的实例代码》本文介绍利用SpringBoot和RustFS构建高性能文件切片上传系统,实现大文件秒传、断点续传和分片上传等功能,具有一定的参考... 目录一、为什么选择 RustFS + SpringBoot?二、环境准备与部署2.1 安装 RustF

Nginx部署HTTP/3的实现步骤

《Nginx部署HTTP/3的实现步骤》本文介绍了在Nginx中部署HTTP/3的详细步骤,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学... 目录前提条件第一步:安装必要的依赖库第二步:获取并构建 BoringSSL第三步:获取 Nginx

MyBatis Plus实现时间字段自动填充的完整方案

《MyBatisPlus实现时间字段自动填充的完整方案》在日常开发中,我们经常需要记录数据的创建时间和更新时间,传统的做法是在每次插入或更新操作时手动设置这些时间字段,这种方式不仅繁琐,还容易遗漏,... 目录前言解决目标技术栈实现步骤1. 实体类注解配置2. 创建元数据处理器3. 服务层代码优化填充机制详

Python实现Excel批量样式修改器(附完整代码)

《Python实现Excel批量样式修改器(附完整代码)》这篇文章主要为大家详细介绍了如何使用Python实现一个Excel批量样式修改器,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一... 目录前言功能特性核心功能界面特性系统要求安装说明使用指南基本操作流程高级功能技术实现核心技术栈关键函

Java实现字节字符转bcd编码

《Java实现字节字符转bcd编码》BCD是一种将十进制数字编码为二进制的表示方式,常用于数字显示和存储,本文将介绍如何在Java中实现字节字符转BCD码的过程,需要的小伙伴可以了解下... 目录前言BCD码是什么Java实现字节转bcd编码方法补充总结前言BCD码(Binary-Coded Decima

SpringBoot全局域名替换的实现

《SpringBoot全局域名替换的实现》本文主要介绍了SpringBoot全局域名替换的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一... 目录 项目结构⚙️ 配置文件application.yml️ 配置类AppProperties.Ja