vllm 部署GLM4模型进行 Zero-Shot 文本分类实验,让大模型给出分类原因,准确率可提高6%

本文主要是介绍vllm 部署GLM4模型进行 Zero-Shot 文本分类实验,让大模型给出分类原因,准确率可提高6%,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

    • 简介
    • 数据集
    • 实验设置
    • 数据集转换
    • 模型推理
    • 评估

简介

本文记录了使用 vllm 部署 GLM4-9B-Chat 模型进行 Zero-Shot 文本分类的实验过程与结果。通过对 AG_News 数据集的测试,研究发现大模型在直接进行分类时的准确率为 77%。然而,让模型给出分类原因描述(reason)后,准确率显著提升至 83%,提升幅度达 6%。这一结果验证了引入 reasoning 机制的有效性。文中详细介绍了实验数据、提示词设计、模型推理方法及评估手段。

复现自这篇论文:Text Classification via Large Language Models. https://arxiv.org/abs/2305.08377 让大模型使用reason。

该项目的文件结构如下所示:

├── cls_vllm.log
├── cls_vllm.py
├── data
│   ├── basic_llm.csv
│   └── reason_llm.csv
├── data_processon.ipynb
├── eval.ipynb
├── output
│   ├── basic_vllm.pkl
│   └── reason_vllm.pkl
├── settings.py
└── utils.py

数据集

现在要找一个数据集做实验,进入 https://paperswithcode.com/。
找到 文本分类,看目前的 SOTA 是在哪些数据集上做的,文本分类. https://paperswithcode.com/task/text-classification

在这里插入图片描述

实验使用了 AG_News 数据集。若您对数据集操作技巧感兴趣,可以参考这篇文章:

datasets库一些基本方法:filter、map、select等. https://blog.csdn.net/sjxgghg/article/details/141384131

实验设置

settings.py 文件中,我们定义了一些实验中使用的提示词:

LABEL_NAMES = ['World', 'Sports', 'Business', 'Science | Technology']BASIC_CLS_PROMPT = """
你是文本分类专家,请你给下述文本分类,把它分到下述类别中:
* World
* Sports
* Business
* Science | Technologytext是待分类的文本。请你一步一步思考,在label中给出最终的分类结果:
text: {text}
label: 
"""REASON_CLS_PROMPT = """
你是文本分类专家,请你给下述文本分类,把它分到下述类别中:
* World
* Sports
* Business
* Science | Technologytext是待分类的文本。请你一步一步思考,首先在reason中说明你的判断理由,然后在label中给出最终的分类结果:
text: {text}
reason: 
label: 
""".lstrip()data_files = ["data/basic_llm.csv","data/reason_llm.csv"
]output_dirs = ["output/basic_vllm.pkl","output/reason_vllm.pkl"
]

这两个数据文件用于存储不同提示词的大模型推理数据:

  • data/basic_llm.csv
  • data/reason_llm.csv

数据集转换

为了让模型能够执行文本分类任务,我们需要对原始数据集进行转换,添加提示词。

原始的数据集样式,要经过提示词转换后,才能让模型做文本分类。

代码如下:

data_processon.ipynb

from datasets import load_datasetfrom settings import LABEL_NAMES, BASIC_CLS_PROMPT, REASON_CLS_PROMPT, data_filesimport os
os.environ['HTTP_PROXY'] = 'http://127.0.0.1:7890'
os.environ['HTTPS_PROXY'] = 'http://127.0.0.1:7890'# 加载 AG_News 数据集的测试集,只使用test的数据去预测
ds = load_dataset("fancyzhx/ag_news")# 转换为 basic 提示词格式
def trans2llm(item):item["text"] = BASIC_CLS_PROMPT.format(text=item["text"])return item
ds["test"].map(trans2llm).to_csv(data_files[0], index=False)# 转换为 reason 提示词格式
def trans2llm(item):item["text"] = REASON_CLS_PROMPT.format(text=item["text"])return item
ds["test"].map(trans2llm).to_csv(data_files[1], index=False)

上述代码实现的功能就是把数据集的文本,放入到提示词的{text} 里面。

模型推理

本文使用 ZhipuAI/glm-4-9b-chat. https://www.modelscope.cn/models/zhipuai/glm-4-9b-chat 智谱9B的chat模型,进行VLLM推理。

为了简化模型调用,我们编写了一些实用工具:

utils.py

import pickle
from transformers import AutoTokenizer
from vllm import LLM, SamplingParams
from modelscope import snapshot_downloaddef save_obj(obj, name):"""将对象保存到文件:param obj: 要保存的对象:param name: 文件的名称(包括路径)"""with open(name, "wb") as f:pickle.dump(obj, f, pickle.HIGHEST_PROTOCOL)def load_obj(name):"""从文件加载对象:param name: 文件的名称(包括路径):return: 反序列化后的对象"""with open(name, "rb") as f:return pickle.load(f)def glm4_vllm(prompts, output_dir, temperature=0, max_tokens=1024):# GLM-4-9B-Chat-1Mmax_model_len, tp_size = 131072, 1model_dir = snapshot_download('ZhipuAI/glm-4-9b-chat')tokenizer = AutoTokenizer.from_pretrained(model_dir, trust_remote_code=True)llm = LLM(model=model_dir,tensor_parallel_size=tp_size,max_model_len=max_model_len,trust_remote_code=True,enforce_eager=True,)stop_token_ids = [151329, 151336, 151338]sampling_params = SamplingParams(temperature=temperature, max_tokens=max_tokens, stop_token_ids=stop_token_ids)inputs = tokenizer.apply_chat_template(prompts, tokenize=False, add_generation_prompt=True)outputs = llm.generate(prompts=inputs, sampling_params=sampling_params)save_obj(outputs, output_dir)

glm4_vllm :

  • 参考自 https://www.modelscope.cn/models/zhipuai/glm-4-9b-chat

    给大家封装好了,以后有任务,直接调用函数

save_obj:

  • 把python对象,序列化保存到本地;

    在本项目中,用来保存 vllm 推理的结果;

模型推理代码
cls_vllm.py

from datasets import load_datasetfrom utils import glm4_vllm
from settings import data_files, output_dirs# basic 预测
basic_dataset = load_dataset("csv",data_files=data_files[0],split="train",
)
prompts = []
for item in basic_dataset:prompts.append([{"role": "user", "content": item["text"]}])
glm4_vllm(prompts, output_dirs[0])# reason 预测,添加了原因说明
reason_dataset = load_dataset("csv",data_files=data_files[1],split="train",
)
prompts = []
for item in reason_dataset:prompts.append([{"role": "user", "content": item["text"]}])
glm4_vllm(prompts, output_dirs[1])# nohup python cls_vllm.py > cls_vllm.log 2>&1 &

在推理过程中,我们使用了 glm4_vllm 函数进行模型推理,并将结果保存到指定路径。

output_dirs: 最终推理完成的结果输出路径;

评估

在获得模型推理结果后,我们需要对其进行评估,以衡量分类的准确性。

eval.ipynb

from settings import LABEL_NAMES
from utils import load_objfrom datasets import load_dataset
from settings import data_files, output_dirsimport os
os.environ['HTTP_PROXY'] = 'http://127.0.0.1:7890'
os.environ['HTTPS_PROXY'] = 'http://127.0.0.1:7890'ds = load_dataset("fancyzhx/ag_news")
def eval(raw_dataset, vllm_predict):right = 0 # 预测正确的数量multi_label = 0 # 预测多标签的数量for data, output in zip(raw_dataset, vllm_predict):true_label = LABEL_NAMES[data['label']]output_text = output.outputs[0].textpred_label = output_text.split("label")[-1]tmp_pred = []for label in LABEL_NAMES:if label in pred_label:tmp_pred.append(label)if len(tmp_pred) > 1:multi_label += 1if " ".join(tmp_pred) == true_label:right += 1return right, multi_label

我们分别对 basic 和 reason 预测结果进行了评估。

basic 预测结果的评估 :

dataset = load_dataset('csv', data_files=data_files[0], split='train')
output = load_obj(output_dirs[0])eval(dataset, output)

输出结果:

(5845, 143)

加了reason 预测结果评估:

dataset = load_dataset('csv', data_files=data_files[1], split='train')
output = load_obj(output_dirs[1])eval(dataset, output)

输出结果:

(6293, 14)

评估结果如下:

  • basic: 直接分类准确率为 77%(5845/7600),误分类为多标签的样本有 143 个。
  • reason: 在输出原因后分类准确率提高至 83%(6293/7600),多标签误分类样本减少至 14 个。

误分类多标签: 这是单分类问题,大模型应该只输出一个类别,但是它输出了多个类别;

可以发现,让大模型输出reason,不仅分类准确率提升了5%,而且在误分类多标签的数量也有所下降。
原先误分类多标签有143条数据,使用reason后,多标签误分类的数量降低到了14条。

这些结果表明,让模型输出 reason的过程,确实能够有效提升分类准确性,还能减少误分类多个标签。

这篇关于vllm 部署GLM4模型进行 Zero-Shot 文本分类实验,让大模型给出分类原因,准确率可提高6%的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1100409

相关文章

javax.net.ssl.SSLHandshakeException:异常原因及解决方案

《javax.net.ssl.SSLHandshakeException:异常原因及解决方案》javax.net.ssl.SSLHandshakeException是一个SSL握手异常,通常在建立SS... 目录报错原因在程序中绕过服务器的安全验证注意点最后多说一句报错原因一般出现这种问题是因为目标服务器

苹果macOS 26 Tahoe主题功能大升级:可定制图标/高亮文本/文件夹颜色

《苹果macOS26Tahoe主题功能大升级:可定制图标/高亮文本/文件夹颜色》在整体系统设计方面,macOS26采用了全新的玻璃质感视觉风格,应用于Dock栏、应用图标以及桌面小部件等多个界面... 科技媒体 MACRumors 昨日(6 月 13 日)发布博文,报道称在 macOS 26 Tahoe 中

Python实现精准提取 PDF中的文本,表格与图片

《Python实现精准提取PDF中的文本,表格与图片》在实际的系统开发中,处理PDF文件不仅限于读取整页文本,还有提取文档中的表格数据,图片或特定区域的内容,下面我们来看看如何使用Python实... 目录安装 python 库提取 PDF 文本内容:获取整页文本与指定区域内容获取页面上的所有文本内容获取

MyBatis Plus 中 update_time 字段自动填充失效的原因分析及解决方案(最新整理)

《MyBatisPlus中update_time字段自动填充失效的原因分析及解决方案(最新整理)》在使用MyBatisPlus时,通常我们会在数据库表中设置create_time和update... 目录前言一、问题现象二、原因分析三、总结:常见原因与解决方法对照表四、推荐写法前言在使用 MyBATis

Linux使用scp进行远程目录文件复制的详细步骤和示例

《Linux使用scp进行远程目录文件复制的详细步骤和示例》在Linux系统中,scp(安全复制协议)是一个使用SSH(安全外壳协议)进行文件和目录安全传输的命令,它允许在远程主机之间复制文件和目录,... 目录1. 什么是scp?2. 语法3. 示例示例 1: 复制本地目录到远程主机示例 2: 复制远程主

IDEA中Maven Dependencies出现红色波浪线的原因及解决方法

《IDEA中MavenDependencies出现红色波浪线的原因及解决方法》在使用IntelliJIDEA开发Java项目时,尤其是基于Maven的项目,您可能会遇到MavenDependenci... 目录一、问题概述二、解决步骤2.1 检查 Maven 配置2.2 更新 Maven 项目2.3 清理本

Java空指针异常NullPointerException的原因与解决方案

《Java空指针异常NullPointerException的原因与解决方案》在Java开发中,NullPointerException(空指针异常)是最常见的运行时异常之一,通常发生在程序尝试访问或... 目录一、空指针异常产生的原因1. 变量未初始化2. 对象引用被显式置为null3. 方法返回null

详解如何使用Python从零开始构建文本统计模型

《详解如何使用Python从零开始构建文本统计模型》在自然语言处理领域,词汇表构建是文本预处理的关键环节,本文通过Python代码实践,演示如何从原始文本中提取多尺度特征,并通过动态调整机制构建更精确... 目录一、项目背景与核心思想二、核心代码解析1. 数据加载与预处理2. 多尺度字符统计3. 统计结果可

windows系统上如何进行maven安装和配置方式

《windows系统上如何进行maven安装和配置方式》:本文主要介绍windows系统上如何进行maven安装和配置方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不... 目录1. Maven 简介2. maven的下载与安装2.1 下载 Maven2.2 Maven安装2.

C/C++的OpenCV 进行图像梯度提取的几种实现

《C/C++的OpenCV进行图像梯度提取的几种实现》本文主要介绍了C/C++的OpenCV进行图像梯度提取的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的... 目录预www.chinasem.cn备知识1. 图像加载与预处理2. Sobel 算子计算 X 和 Y