vllm 部署GLM4模型进行 Zero-Shot 文本分类实验,让大模型给出分类原因,准确率可提高6%

本文主要是介绍vllm 部署GLM4模型进行 Zero-Shot 文本分类实验,让大模型给出分类原因,准确率可提高6%,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

    • 简介
    • 数据集
    • 实验设置
    • 数据集转换
    • 模型推理
    • 评估

简介

本文记录了使用 vllm 部署 GLM4-9B-Chat 模型进行 Zero-Shot 文本分类的实验过程与结果。通过对 AG_News 数据集的测试,研究发现大模型在直接进行分类时的准确率为 77%。然而,让模型给出分类原因描述(reason)后,准确率显著提升至 83%,提升幅度达 6%。这一结果验证了引入 reasoning 机制的有效性。文中详细介绍了实验数据、提示词设计、模型推理方法及评估手段。

复现自这篇论文:Text Classification via Large Language Models. https://arxiv.org/abs/2305.08377 让大模型使用reason。

该项目的文件结构如下所示:

├── cls_vllm.log
├── cls_vllm.py
├── data
│   ├── basic_llm.csv
│   └── reason_llm.csv
├── data_processon.ipynb
├── eval.ipynb
├── output
│   ├── basic_vllm.pkl
│   └── reason_vllm.pkl
├── settings.py
└── utils.py

数据集

现在要找一个数据集做实验,进入 https://paperswithcode.com/。
找到 文本分类,看目前的 SOTA 是在哪些数据集上做的,文本分类. https://paperswithcode.com/task/text-classification

在这里插入图片描述

实验使用了 AG_News 数据集。若您对数据集操作技巧感兴趣,可以参考这篇文章:

datasets库一些基本方法:filter、map、select等. https://blog.csdn.net/sjxgghg/article/details/141384131

实验设置

settings.py 文件中,我们定义了一些实验中使用的提示词:

LABEL_NAMES = ['World', 'Sports', 'Business', 'Science | Technology']BASIC_CLS_PROMPT = """
你是文本分类专家,请你给下述文本分类,把它分到下述类别中:
* World
* Sports
* Business
* Science | Technologytext是待分类的文本。请你一步一步思考,在label中给出最终的分类结果:
text: {text}
label: 
"""REASON_CLS_PROMPT = """
你是文本分类专家,请你给下述文本分类,把它分到下述类别中:
* World
* Sports
* Business
* Science | Technologytext是待分类的文本。请你一步一步思考,首先在reason中说明你的判断理由,然后在label中给出最终的分类结果:
text: {text}
reason: 
label: 
""".lstrip()data_files = ["data/basic_llm.csv","data/reason_llm.csv"
]output_dirs = ["output/basic_vllm.pkl","output/reason_vllm.pkl"
]

这两个数据文件用于存储不同提示词的大模型推理数据:

  • data/basic_llm.csv
  • data/reason_llm.csv

数据集转换

为了让模型能够执行文本分类任务,我们需要对原始数据集进行转换,添加提示词。

原始的数据集样式,要经过提示词转换后,才能让模型做文本分类。

代码如下:

data_processon.ipynb

from datasets import load_datasetfrom settings import LABEL_NAMES, BASIC_CLS_PROMPT, REASON_CLS_PROMPT, data_filesimport os
os.environ['HTTP_PROXY'] = 'http://127.0.0.1:7890'
os.environ['HTTPS_PROXY'] = 'http://127.0.0.1:7890'# 加载 AG_News 数据集的测试集,只使用test的数据去预测
ds = load_dataset("fancyzhx/ag_news")# 转换为 basic 提示词格式
def trans2llm(item):item["text"] = BASIC_CLS_PROMPT.format(text=item["text"])return item
ds["test"].map(trans2llm).to_csv(data_files[0], index=False)# 转换为 reason 提示词格式
def trans2llm(item):item["text"] = REASON_CLS_PROMPT.format(text=item["text"])return item
ds["test"].map(trans2llm).to_csv(data_files[1], index=False)

上述代码实现的功能就是把数据集的文本,放入到提示词的{text} 里面。

模型推理

本文使用 ZhipuAI/glm-4-9b-chat. https://www.modelscope.cn/models/zhipuai/glm-4-9b-chat 智谱9B的chat模型,进行VLLM推理。

为了简化模型调用,我们编写了一些实用工具:

utils.py

import pickle
from transformers import AutoTokenizer
from vllm import LLM, SamplingParams
from modelscope import snapshot_downloaddef save_obj(obj, name):"""将对象保存到文件:param obj: 要保存的对象:param name: 文件的名称(包括路径)"""with open(name, "wb") as f:pickle.dump(obj, f, pickle.HIGHEST_PROTOCOL)def load_obj(name):"""从文件加载对象:param name: 文件的名称(包括路径):return: 反序列化后的对象"""with open(name, "rb") as f:return pickle.load(f)def glm4_vllm(prompts, output_dir, temperature=0, max_tokens=1024):# GLM-4-9B-Chat-1Mmax_model_len, tp_size = 131072, 1model_dir = snapshot_download('ZhipuAI/glm-4-9b-chat')tokenizer = AutoTokenizer.from_pretrained(model_dir, trust_remote_code=True)llm = LLM(model=model_dir,tensor_parallel_size=tp_size,max_model_len=max_model_len,trust_remote_code=True,enforce_eager=True,)stop_token_ids = [151329, 151336, 151338]sampling_params = SamplingParams(temperature=temperature, max_tokens=max_tokens, stop_token_ids=stop_token_ids)inputs = tokenizer.apply_chat_template(prompts, tokenize=False, add_generation_prompt=True)outputs = llm.generate(prompts=inputs, sampling_params=sampling_params)save_obj(outputs, output_dir)

glm4_vllm :

  • 参考自 https://www.modelscope.cn/models/zhipuai/glm-4-9b-chat

    给大家封装好了,以后有任务,直接调用函数

save_obj:

  • 把python对象,序列化保存到本地;

    在本项目中,用来保存 vllm 推理的结果;

模型推理代码
cls_vllm.py

from datasets import load_datasetfrom utils import glm4_vllm
from settings import data_files, output_dirs# basic 预测
basic_dataset = load_dataset("csv",data_files=data_files[0],split="train",
)
prompts = []
for item in basic_dataset:prompts.append([{"role": "user", "content": item["text"]}])
glm4_vllm(prompts, output_dirs[0])# reason 预测,添加了原因说明
reason_dataset = load_dataset("csv",data_files=data_files[1],split="train",
)
prompts = []
for item in reason_dataset:prompts.append([{"role": "user", "content": item["text"]}])
glm4_vllm(prompts, output_dirs[1])# nohup python cls_vllm.py > cls_vllm.log 2>&1 &

在推理过程中,我们使用了 glm4_vllm 函数进行模型推理,并将结果保存到指定路径。

output_dirs: 最终推理完成的结果输出路径;

评估

在获得模型推理结果后,我们需要对其进行评估,以衡量分类的准确性。

eval.ipynb

from settings import LABEL_NAMES
from utils import load_objfrom datasets import load_dataset
from settings import data_files, output_dirsimport os
os.environ['HTTP_PROXY'] = 'http://127.0.0.1:7890'
os.environ['HTTPS_PROXY'] = 'http://127.0.0.1:7890'ds = load_dataset("fancyzhx/ag_news")
def eval(raw_dataset, vllm_predict):right = 0 # 预测正确的数量multi_label = 0 # 预测多标签的数量for data, output in zip(raw_dataset, vllm_predict):true_label = LABEL_NAMES[data['label']]output_text = output.outputs[0].textpred_label = output_text.split("label")[-1]tmp_pred = []for label in LABEL_NAMES:if label in pred_label:tmp_pred.append(label)if len(tmp_pred) > 1:multi_label += 1if " ".join(tmp_pred) == true_label:right += 1return right, multi_label

我们分别对 basic 和 reason 预测结果进行了评估。

basic 预测结果的评估 :

dataset = load_dataset('csv', data_files=data_files[0], split='train')
output = load_obj(output_dirs[0])eval(dataset, output)

输出结果:

(5845, 143)

加了reason 预测结果评估:

dataset = load_dataset('csv', data_files=data_files[1], split='train')
output = load_obj(output_dirs[1])eval(dataset, output)

输出结果:

(6293, 14)

评估结果如下:

  • basic: 直接分类准确率为 77%(5845/7600),误分类为多标签的样本有 143 个。
  • reason: 在输出原因后分类准确率提高至 83%(6293/7600),多标签误分类样本减少至 14 个。

误分类多标签: 这是单分类问题,大模型应该只输出一个类别,但是它输出了多个类别;

可以发现,让大模型输出reason,不仅分类准确率提升了5%,而且在误分类多标签的数量也有所下降。
原先误分类多标签有143条数据,使用reason后,多标签误分类的数量降低到了14条。

这些结果表明,让模型输出 reason的过程,确实能够有效提升分类准确性,还能减少误分类多个标签。

这篇关于vllm 部署GLM4模型进行 Zero-Shot 文本分类实验,让大模型给出分类原因,准确率可提高6%的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1100409

相关文章

使用IDEA部署Docker应用指南分享

《使用IDEA部署Docker应用指南分享》本文介绍了使用IDEA部署Docker应用的四步流程:创建Dockerfile、配置IDEADocker连接、设置运行调试环境、构建运行镜像,并强调需准备本... 目录一、创建 dockerfile 配置文件二、配置 IDEA 的 Docker 连接三、配置 Do

Java.lang.InterruptedException被中止异常的原因及解决方案

《Java.lang.InterruptedException被中止异常的原因及解决方案》Java.lang.InterruptedException是线程被中断时抛出的异常,用于协作停止执行,常见于... 目录报错问题报错原因解决方法Java.lang.InterruptedException 是 Jav

Python进行JSON和Excel文件转换处理指南

《Python进行JSON和Excel文件转换处理指南》在数据交换与系统集成中,JSON与Excel是两种极为常见的数据格式,本文将介绍如何使用Python实现将JSON转换为格式化的Excel文件,... 目录将 jsON 导入为格式化 Excel将 Excel 导出为结构化 JSON处理嵌套 JSON:

一文解密Python进行监控进程的黑科技

《一文解密Python进行监控进程的黑科技》在计算机系统管理和应用性能优化中,监控进程的CPU、内存和IO使用率是非常重要的任务,下面我们就来讲讲如何Python写一个简单使用的监控进程的工具吧... 目录准备工作监控CPU使用率监控内存使用率监控IO使用率小工具代码整合在计算机系统管理和应用性能优化中,监

如何使用Lombok进行spring 注入

《如何使用Lombok进行spring注入》本文介绍如何用Lombok简化Spring注入,推荐优先使用setter注入,通过注解自动生成getter/setter及构造器,减少冗余代码,提升开发效... Lombok为了开发环境简化代码,好处不用多说。spring 注入方式为2种,构造器注入和setter

MySQL进行数据库审计的详细步骤和示例代码

《MySQL进行数据库审计的详细步骤和示例代码》数据库审计通过触发器、内置功能及第三方工具记录和监控数据库活动,确保安全、完整与合规,Java代码实现自动化日志记录,整合分析系统提升监控效率,本文给大... 目录一、数据库审计的基本概念二、使用触发器进行数据库审计1. 创建审计表2. 创建触发器三、Java

MySQL 主从复制部署及验证(示例详解)

《MySQL主从复制部署及验证(示例详解)》本文介绍MySQL主从复制部署步骤及学校管理数据库创建脚本,包含表结构设计、示例数据插入和查询语句,用于验证主从同步功能,感兴趣的朋友一起看看吧... 目录mysql 主从复制部署指南部署步骤1.环境准备2. 主服务器配置3. 创建复制用户4. 获取主服务器状态5

解决1093 - You can‘t specify target table报错问题及原因分析

《解决1093-Youcan‘tspecifytargettable报错问题及原因分析》MySQL1093错误因UPDATE/DELETE语句的FROM子句直接引用目标表或嵌套子查询导致,... 目录报js错原因分析具体原因解决办法方法一:使用临时表方法二:使用JOIN方法三:使用EXISTS示例总结报错原

MySQL深分页进行性能优化的常见方法

《MySQL深分页进行性能优化的常见方法》在Web应用中,分页查询是数据库操作中的常见需求,然而,在面对大型数据集时,深分页(deeppagination)却成为了性能优化的一个挑战,在本文中,我们将... 目录引言:深分页,真的只是“翻页慢”那么简单吗?一、背景介绍二、深分页的性能问题三、业务场景分析四、

SpringBoot结合Docker进行容器化处理指南

《SpringBoot结合Docker进行容器化处理指南》在当今快速发展的软件工程领域,SpringBoot和Docker已经成为现代Java开发者的必备工具,本文将深入讲解如何将一个SpringBo... 目录前言一、为什么选择 Spring Bootjavascript + docker1. 快速部署与