编程实现基于信息熵/基尼指数划分选择的决策树算法

2024-08-23 19:44

本文主要是介绍编程实现基于信息熵/基尼指数划分选择的决策树算法,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

编程实现基于信息熵/基尼指数划分选择的决策树算法

手动建立一个csv文件

#csv的内容为
Idx,color,root,knocks,texture,navel,touch,density,sugar_ratio,label
1,dark_green,curl_up,little_heavily,distinct,sinking,hard_smooth,0.697,0.46,1
2,black,curl_up,heavily,distinct,sinking,hard_smooth,0.774,0.376,1
3,black,curl_up,little_heavily,distinct,sinking,hard_smooth,0.634,0.264,1
4,dark_green,curl_up,heavily,distinct,sinking,hard_smooth,0.608,0.318,1
5,light_white,curl_up,little_heavily,distinct,sinking,hard_smooth,0.556,0.215,1
6,dark_green,little_curl_up,little_heavily,distinct,little_sinking,soft_stick,0.403,0.237,1
7,black,little_curl_up,little_heavily,little_blur,little_sinking,soft_stick,0.481,0.149,1
8,black,little_curl_up,little_heavily,distinct,little_sinking,hard_smooth,0.437,0.211,1
9,black,little_curl_up,heavily,little_blur,little_sinking,hard_smooth,0.666,0.091,0
10,dark_green,stiff,clear,distinct,even,soft_stick,0.243,0.267,0
11,light_white,stiff,clear,blur,even,hard_smooth,0.245,0.057,0
12,light_white,curl_up,little_heavily,blur,even,soft_stick,0.343,0.099,0
13,dark_green,little_curl_up,little_heavily,little_blur,sinking,hard_smooth,0.639,0.161,0
14,light_white,little_curl_up,heavily,little_blur,sinking,hard_smooth,0.657,0.198,0
15,black,little_curl_up,little_heavily,distinct,little_sinking,soft_stick,0.36,0.37,0
16,light_white,curl_up,little_heavily,blur,even,hard_smooth,0.593,0.042,0
17,dark_green,curl_up,heavily,little_blur,little_sinking,hard_smooth,0.719,0.103,0

代码

import csv
from sklearn.feature_extraction import DictVectorizer
from sklearn import preprocessing
from sklearn import tree
from matplotlib import pyplot as plt
import graphviz
import os     
from IPython.core.interactiveshell import InteractiveShell
InteractiveShell.ast_node_interactivity = "all"os.environ["PATH"] += os.pathsep + 'C:\Program Files\Graphviz\\bin'
def is_number(n):is_number = Truetry:num = float(n)is_number = num == numexcept ValueError:# 不是float类型则返回falseis_number = Falsereturn is_numberdef loadData(filename):data = open(filename,'r',encoding='utf-8')reader = csv.reader(data)headers = next(reader) # 通过调用next方法来一行一行的读取数据featureList =[] # 添加属性数据labelList = [] # 添加结果for row in reader:# 每行每行的来labelList.append(row[len(row)-1])rowDict = {}for i in range(1,len(row)-1):# 跳过序号和结果# 对于每个属性数据,if is_number(row[i]) == True:rowDict[headers[i]] = float(row[i])else:rowDict[headers[i]] = row[i]featureList.append(rowDict)return featureList,labelListdef createDTree_information(featureList,labelList):# 对离散值进行编码处理vec = DictVectorizer()dummyX = vec.fit_transform(featureList).toarray()lb = preprocessing.LabelBinarizer()dummyY = lb.fit_transform(labelList)clf = tree.DecisionTreeClassifier(criterion='entropy')clf = clf.fit(dummyX,dummyY)target_name=['0','1']dot_data = tree.export_graphviz(clf,feature_names=vec.get_feature_names_out(),class_names=target_name,out_file=None,filled=True,rounded=True)graph = graphviz.Source(dot_data)return graphdef createDTree_GiNi(featureList,labelList):# 对离散值进行编码处理vec = DictVectorizer()dummyX = vec.fit_transform(featureList).toarray()lb = preprocessing.LabelBinarizer()dummyY = lb.fit_transform(labelList)clf = tree.DecisionTreeClassifier(criterion='entropy')clf = clf.fit(dummyX,dummyY)target_name=['0','1']dot_data = tree.export_graphviz(clf,feature_names=vec.get_feature_names_out(),class_names=target_name,out_file=None,filled=True,rounded=True)graph = graphviz.Source(dot_data)return graph
featureList,labelList = loadData('watermelo.csv')
graph = createDTree_information(featureList,labelList)
graph_gini = createDTree_GiNi(featureList,labelList)
print('以基尼指数作为划分准则的决策树')
graph_gini 
print('以信息熵作为划分准则的决策树')
graph

注意,前面导包的时候path的值是Graphviz的bin文件夹路径,这个Graphviz要手动去官网离线下载,然后记住它的安装位置
输出:以基尼指数作为划分准则的决策树
基尼指数划分
以信息熵作为划分准则的决策树
信息熵

这篇关于编程实现基于信息熵/基尼指数划分选择的决策树算法的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1100331

相关文章

C++中unordered_set哈希集合的实现

《C++中unordered_set哈希集合的实现》std::unordered_set是C++标准库中的无序关联容器,基于哈希表实现,具有元素唯一性和无序性特点,本文就来详细的介绍一下unorder... 目录一、概述二、头文件与命名空间三、常用方法与示例1. 构造与析构2. 迭代器与遍历3. 容量相关4

C++中悬垂引用(Dangling Reference) 的实现

《C++中悬垂引用(DanglingReference)的实现》C++中的悬垂引用指引用绑定的对象被销毁后引用仍存在的情况,会导致访问无效内存,下面就来详细的介绍一下产生的原因以及如何避免,感兴趣... 目录悬垂引用的产生原因1. 引用绑定到局部变量,变量超出作用域后销毁2. 引用绑定到动态分配的对象,对象

SpringBoot基于注解实现数据库字段回填的完整方案

《SpringBoot基于注解实现数据库字段回填的完整方案》这篇文章主要为大家详细介绍了SpringBoot如何基于注解实现数据库字段回填的相关方法,文中的示例代码讲解详细,感兴趣的小伙伴可以了解... 目录数据库表pom.XMLRelationFieldRelationFieldMapping基础的一些代

Java HashMap的底层实现原理深度解析

《JavaHashMap的底层实现原理深度解析》HashMap基于数组+链表+红黑树结构,通过哈希算法和扩容机制优化性能,负载因子与树化阈值平衡效率,是Java开发必备的高效数据结构,本文给大家介绍... 目录一、概述:HashMap的宏观结构二、核心数据结构解析1. 数组(桶数组)2. 链表节点(Node

Java AOP面向切面编程的概念和实现方式

《JavaAOP面向切面编程的概念和实现方式》AOP是面向切面编程,通过动态代理将横切关注点(如日志、事务)与核心业务逻辑分离,提升代码复用性和可维护性,本文给大家介绍JavaAOP面向切面编程的概... 目录一、AOP 是什么?二、AOP 的核心概念与实现方式核心概念实现方式三、Spring AOP 的关

Python实现字典转字符串的五种方法

《Python实现字典转字符串的五种方法》本文介绍了在Python中如何将字典数据结构转换为字符串格式的多种方法,首先可以通过内置的str()函数进行简单转换;其次利用ison.dumps()函数能够... 目录1、使用json模块的dumps方法:2、使用str方法:3、使用循环和字符串拼接:4、使用字符

深入理解Mysql OnlineDDL的算法

《深入理解MysqlOnlineDDL的算法》本文主要介绍了讲解MysqlOnlineDDL的算法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小... 目录一、Online DDL 是什么?二、Online DDL 的三种主要算法2.1COPY(复制法)

Linux下利用select实现串口数据读取过程

《Linux下利用select实现串口数据读取过程》文章介绍Linux中使用select、poll或epoll实现串口数据读取,通过I/O多路复用机制在数据到达时触发读取,避免持续轮询,示例代码展示设... 目录示例代码(使用select实现)代码解释总结在 linux 系统里,我们可以借助 select、

Linux挂载linux/Windows共享目录实现方式

《Linux挂载linux/Windows共享目录实现方式》:本文主要介绍Linux挂载linux/Windows共享目录实现方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地... 目录文件共享协议linux环境作为服务端(NFS)在服务器端安装 NFS创建要共享的目录修改 NFS 配

通过React实现页面的无限滚动效果

《通过React实现页面的无限滚动效果》今天我们来聊聊无限滚动这个现代Web开发中不可或缺的技术,无论你是刷微博、逛知乎还是看脚本,无限滚动都已经渗透到我们日常的浏览体验中,那么,如何优雅地实现它呢?... 目录1. 早期的解决方案2. 交叉观察者:IntersectionObserver2.1 Inter