编程实现基于信息熵/基尼指数划分选择的决策树算法

2024-08-23 19:44

本文主要是介绍编程实现基于信息熵/基尼指数划分选择的决策树算法,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

编程实现基于信息熵/基尼指数划分选择的决策树算法

手动建立一个csv文件

#csv的内容为
Idx,color,root,knocks,texture,navel,touch,density,sugar_ratio,label
1,dark_green,curl_up,little_heavily,distinct,sinking,hard_smooth,0.697,0.46,1
2,black,curl_up,heavily,distinct,sinking,hard_smooth,0.774,0.376,1
3,black,curl_up,little_heavily,distinct,sinking,hard_smooth,0.634,0.264,1
4,dark_green,curl_up,heavily,distinct,sinking,hard_smooth,0.608,0.318,1
5,light_white,curl_up,little_heavily,distinct,sinking,hard_smooth,0.556,0.215,1
6,dark_green,little_curl_up,little_heavily,distinct,little_sinking,soft_stick,0.403,0.237,1
7,black,little_curl_up,little_heavily,little_blur,little_sinking,soft_stick,0.481,0.149,1
8,black,little_curl_up,little_heavily,distinct,little_sinking,hard_smooth,0.437,0.211,1
9,black,little_curl_up,heavily,little_blur,little_sinking,hard_smooth,0.666,0.091,0
10,dark_green,stiff,clear,distinct,even,soft_stick,0.243,0.267,0
11,light_white,stiff,clear,blur,even,hard_smooth,0.245,0.057,0
12,light_white,curl_up,little_heavily,blur,even,soft_stick,0.343,0.099,0
13,dark_green,little_curl_up,little_heavily,little_blur,sinking,hard_smooth,0.639,0.161,0
14,light_white,little_curl_up,heavily,little_blur,sinking,hard_smooth,0.657,0.198,0
15,black,little_curl_up,little_heavily,distinct,little_sinking,soft_stick,0.36,0.37,0
16,light_white,curl_up,little_heavily,blur,even,hard_smooth,0.593,0.042,0
17,dark_green,curl_up,heavily,little_blur,little_sinking,hard_smooth,0.719,0.103,0

代码

import csv
from sklearn.feature_extraction import DictVectorizer
from sklearn import preprocessing
from sklearn import tree
from matplotlib import pyplot as plt
import graphviz
import os     
from IPython.core.interactiveshell import InteractiveShell
InteractiveShell.ast_node_interactivity = "all"os.environ["PATH"] += os.pathsep + 'C:\Program Files\Graphviz\\bin'
def is_number(n):is_number = Truetry:num = float(n)is_number = num == numexcept ValueError:# 不是float类型则返回falseis_number = Falsereturn is_numberdef loadData(filename):data = open(filename,'r',encoding='utf-8')reader = csv.reader(data)headers = next(reader) # 通过调用next方法来一行一行的读取数据featureList =[] # 添加属性数据labelList = [] # 添加结果for row in reader:# 每行每行的来labelList.append(row[len(row)-1])rowDict = {}for i in range(1,len(row)-1):# 跳过序号和结果# 对于每个属性数据,if is_number(row[i]) == True:rowDict[headers[i]] = float(row[i])else:rowDict[headers[i]] = row[i]featureList.append(rowDict)return featureList,labelListdef createDTree_information(featureList,labelList):# 对离散值进行编码处理vec = DictVectorizer()dummyX = vec.fit_transform(featureList).toarray()lb = preprocessing.LabelBinarizer()dummyY = lb.fit_transform(labelList)clf = tree.DecisionTreeClassifier(criterion='entropy')clf = clf.fit(dummyX,dummyY)target_name=['0','1']dot_data = tree.export_graphviz(clf,feature_names=vec.get_feature_names_out(),class_names=target_name,out_file=None,filled=True,rounded=True)graph = graphviz.Source(dot_data)return graphdef createDTree_GiNi(featureList,labelList):# 对离散值进行编码处理vec = DictVectorizer()dummyX = vec.fit_transform(featureList).toarray()lb = preprocessing.LabelBinarizer()dummyY = lb.fit_transform(labelList)clf = tree.DecisionTreeClassifier(criterion='entropy')clf = clf.fit(dummyX,dummyY)target_name=['0','1']dot_data = tree.export_graphviz(clf,feature_names=vec.get_feature_names_out(),class_names=target_name,out_file=None,filled=True,rounded=True)graph = graphviz.Source(dot_data)return graph
featureList,labelList = loadData('watermelo.csv')
graph = createDTree_information(featureList,labelList)
graph_gini = createDTree_GiNi(featureList,labelList)
print('以基尼指数作为划分准则的决策树')
graph_gini 
print('以信息熵作为划分准则的决策树')
graph

注意,前面导包的时候path的值是Graphviz的bin文件夹路径,这个Graphviz要手动去官网离线下载,然后记住它的安装位置
输出:以基尼指数作为划分准则的决策树
基尼指数划分
以信息熵作为划分准则的决策树
信息熵

这篇关于编程实现基于信息熵/基尼指数划分选择的决策树算法的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!


原文地址:
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.chinasem.cn/article/1100331

相关文章

使用SpringBoot整合Sharding Sphere实现数据脱敏的示例

《使用SpringBoot整合ShardingSphere实现数据脱敏的示例》ApacheShardingSphere数据脱敏模块,通过SQL拦截与改写实现敏感信息加密存储,解决手动处理繁琐及系统改... 目录痛点一:痛点二:脱敏配置Quick Start——Spring 显示配置:1.引入依赖2.创建脱敏

基于Python实现一个简单的题库与在线考试系统

《基于Python实现一个简单的题库与在线考试系统》在当今信息化教育时代,在线学习与考试系统已成为教育技术领域的重要组成部分,本文就来介绍一下如何使用Python和PyQt5框架开发一个名为白泽题库系... 目录概述功能特点界面展示系统架构设计类结构图Excel题库填写格式模板题库题目填写格式表核心数据结构

C#之List集合去重复对象的实现方法

《C#之List集合去重复对象的实现方法》:本文主要介绍C#之List集合去重复对象的实现方法,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录C# List集合去重复对象方法1、测试数据2、测试数据3、知识点补充总结C# List集合去重复对象方法1、测试数据

Linux实现线程同步的多种方式汇总

《Linux实现线程同步的多种方式汇总》本文详细介绍了Linux下线程同步的多种方法,包括互斥锁、自旋锁、信号量以及它们的使用示例,通过这些同步机制,可以解决线程安全问题,防止资源竞争导致的错误,示例... 目录什么是线程同步?一、互斥锁(单人洗手间规则)适用场景:特点:二、条件变量(咖啡厅取餐系统)工作流

SpringBoot读取ZooKeeper(ZK)属性的方法实现

《SpringBoot读取ZooKeeper(ZK)属性的方法实现》本文主要介绍了SpringBoot读取ZooKeeper(ZK)属性的方法实现,强调使用@ConfigurationProperti... 目录1. 在配置文件中定义 ZK 属性application.propertiesapplicati

Java Multimap实现类与操作的具体示例

《JavaMultimap实现类与操作的具体示例》Multimap出现在Google的Guava库中,它为Java提供了更加灵活的集合操作,:本文主要介绍JavaMultimap实现类与操作的... 目录一、Multimap 概述Multimap 主要特点:二、Multimap 实现类1. ListMult

C#实现将Office文档(Word/Excel/PDF/PPT)转为Markdown格式

《C#实现将Office文档(Word/Excel/PDF/PPT)转为Markdown格式》Markdown凭借简洁的语法、优良的可读性,以及对版本控制系统的高度兼容性,逐渐成为最受欢迎的文档格式... 目录为什么要将文档转换为 Markdown 格式使用工具将 Word 文档转换为 Markdown(.

Java反射实现多属性去重与分组功能

《Java反射实现多属性去重与分组功能》在Java开发中,​​List是一种非常常用的数据结构,通常我们会遇到这样的问题:如何处理​​List​​​中的相同字段?无论是去重还是分组,合理的操作可以提高... 目录一、开发环境与基础组件准备1.环境配置:2. 代码结构说明:二、基础反射工具:BeanUtils

使用Python实现base64字符串与图片互转的详细步骤

《使用Python实现base64字符串与图片互转的详细步骤》要将一个Base64编码的字符串转换为图片文件并保存下来,可以使用Python的base64模块来实现,这一过程包括解码Base64字符串... 目录1. 图片编码为 Base64 字符串2. Base64 字符串解码为图片文件3. 示例使用注意

使用Python实现获取屏幕像素颜色值

《使用Python实现获取屏幕像素颜色值》这篇文章主要为大家详细介绍了如何使用Python实现获取屏幕像素颜色值,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 一、一个小工具,按住F10键,颜色值会跟着显示。完整代码import tkinter as tkimport pyau