使用estimator结构训练tf模型

2024-08-23 14:18

本文主要是介绍使用estimator结构训练tf模型,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、使用estimator训练模型的流程

1、构建model_fn

def my_metric_fn(labels, predictions):return {'accuracy': tf.metrics.accuracy(labels, predictions)}def model_fn(features, labels, mode, params):""" TODO: 模型函数必须有这四个参数:param features: # 输入的特征数据:param labels: # 输入的标签数据:param mode: # train、evaluate或predict:param params: #超参数,对应Estimator传来的参数:return: TPUEstimatorSpec类型的对象"""eval_metrics=(my_metric_fn, [labels, predictions])output_spec = tf.contrib.tpu.TPUEstimatorSpec(mode=mode, # "train" or "eval" or "predict"loss=total_loss, # double类型eval_metrics=eval_metrics, scaffold_fn=scaffold_fn)  # None or funreturn output_spec

2、定义estimator

run_config = tf.contrib.tpu.RunConfig(cluster=tpu_cluster_resolver,master=FLAGS.master,model_dir=FLAGS.output_dir,save_checkpoints_steps=FLAGS.save_checkpoints_steps,keep_checkpoint_max=FLAGS.keep_checkpoint_max,tf_random_seed=FLAGS.random_seed,tpu_config=tf.contrib.tpu.TPUConfig(iterations_per_loop=FLAGS.save_checkpoints_steps,num_shards=FLAGS.num_tpu_cores,per_host_input_for_training=is_per_host))# 自定义估算器
estimator = tf.contrib.tpu.TPUEstimator(use_tpu=FLAGS.use_tpu,model_fn=model_fn,  # 模型函数config=run_config,  # 设置参数对象train_batch_size=FLAGS.train_batch_size,eval_batch_size=FLAGS.eval_batch_size,predict_batch_size=FLAGS.predict_batch_size)

3、训练模型

def train_input_fn(params):batch_size = params["batch_size"]d = tf.data.TFRecordDataset(input_file)if is_training:d = d.repeat()d = d.shuffle(buffer_size=100, seed=random.randint(1, 10000))d = d.apply(tf.data.experimental.map_and_batch(lambda record: _decode_record(record, name_to_features),batch_size=batch_size,drop_remainder=drop_remainder))return destimator.train(input_fn=train_input_fn, max_steps=next_checkpoint)

4、验证模型

def eval_input_fn(params): # 部分代码 只看框架即可batch_size = params["batch_size"]d = tf.data.TFRecordDataset(input_file)if is_training:d = d.repeat()d = d.shuffle(buffer_size=100, seed=random.randint(1, 10000))d = d.apply(tf.data.experimental.map_and_batch(lambda record: _decode_record(record, name_to_features),batch_size=batch_size,drop_remainder=drop_remainder))return d
result = estimator.evaluate(input_fn=eval_input_fn, steps=eval_steps)  # type:dict
for key in sorted(result.keys()):log_info = "  %s = %s"%(key, str(result[key]))

5、测试模型

def predict_input_fn(params): # 部分代码 只看框架即可batch_size = params["batch_size"]d = tf.data.TFRecordDataset(input_file)if is_training:d = d.repeat()d = d.shuffle(buffer_size=100, seed=random.randint(1, 10000))d = d.apply(tf.data.experimental.map_and_batch(lambda record: _decode_record(record, name_to_features),batch_size=batch_size,drop_remainder=drop_remainder))return d
result = estimator.predict(input_fn=predict_input_fn)  # type:dict
for key in sorted(result.keys()):log_info = "  %s = %s"%(key, str(result[key]))

二、使用estimator训练模型的样例

这篇关于使用estimator结构训练tf模型的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1099613

相关文章

Java中流式并行操作parallelStream的原理和使用方法

《Java中流式并行操作parallelStream的原理和使用方法》本文详细介绍了Java中的并行流(parallelStream)的原理、正确使用方法以及在实际业务中的应用案例,并指出在使用并行流... 目录Java中流式并行操作parallelStream0. 问题的产生1. 什么是parallelS

Linux join命令的使用及说明

《Linuxjoin命令的使用及说明》`join`命令用于在Linux中按字段将两个文件进行连接,类似于SQL的JOIN,它需要两个文件按用于匹配的字段排序,并且第一个文件的换行符必须是LF,`jo... 目录一. 基本语法二. 数据准备三. 指定文件的连接key四.-a输出指定文件的所有行五.-o指定输出

Linux jq命令的使用解读

《Linuxjq命令的使用解读》jq是一个强大的命令行工具,用于处理JSON数据,它可以用来查看、过滤、修改、格式化JSON数据,通过使用各种选项和过滤器,可以实现复杂的JSON处理任务... 目录一. 简介二. 选项2.1.2.2-c2.3-r2.4-R三. 字段提取3.1 普通字段3.2 数组字段四.

Linux kill正在执行的后台任务 kill进程组使用详解

《Linuxkill正在执行的后台任务kill进程组使用详解》文章介绍了两个脚本的功能和区别,以及执行这些脚本时遇到的进程管理问题,通过查看进程树、使用`kill`命令和`lsof`命令,分析了子... 目录零. 用到的命令一. 待执行的脚本二. 执行含子进程的脚本,并kill2.1 进程查看2.2 遇到的

详解SpringBoot+Ehcache使用示例

《详解SpringBoot+Ehcache使用示例》本文介绍了SpringBoot中配置Ehcache、自定义get/set方式,并实际使用缓存的过程,文中通过示例代码介绍的非常详细,对大家的学习或者... 目录摘要概念内存与磁盘持久化存储:配置灵活性:编码示例引入依赖:配置ehcache.XML文件:配置

Java 虚拟线程的创建与使用深度解析

《Java虚拟线程的创建与使用深度解析》虚拟线程是Java19中以预览特性形式引入,Java21起正式发布的轻量级线程,本文给大家介绍Java虚拟线程的创建与使用,感兴趣的朋友一起看看吧... 目录一、虚拟线程简介1.1 什么是虚拟线程?1.2 为什么需要虚拟线程?二、虚拟线程与平台线程对比代码对比示例:三

k8s按需创建PV和使用PVC详解

《k8s按需创建PV和使用PVC详解》Kubernetes中,PV和PVC用于管理持久存储,StorageClass实现动态PV分配,PVC声明存储需求并绑定PV,通过kubectl验证状态,注意回收... 目录1.按需创建 PV(使用 StorageClass)创建 StorageClass2.创建 PV

Redis 基本数据类型和使用详解

《Redis基本数据类型和使用详解》String是Redis最基本的数据类型,一个键对应一个值,它的功能十分强大,可以存储字符串、整数、浮点数等多种数据格式,本文给大家介绍Redis基本数据类型和... 目录一、Redis 入门介绍二、Redis 的五大基本数据类型2.1 String 类型2.2 Hash

Redis中Hash从使用过程到原理说明

《Redis中Hash从使用过程到原理说明》RedisHash结构用于存储字段-值对,适合对象数据,支持HSET、HGET等命令,采用ziplist或hashtable编码,通过渐进式rehash优化... 目录一、开篇:Hash就像超市的货架二、Hash的基本使用1. 常用命令示例2. Java操作示例三

Linux创建服务使用systemctl管理详解

《Linux创建服务使用systemctl管理详解》文章指导在Linux中创建systemd服务,设置文件权限为所有者读写、其他只读,重新加载配置,启动服务并检查状态,确保服务正常运行,关键步骤包括权... 目录创建服务 /usr/lib/systemd/system/设置服务文件权限:所有者读写js,其他