初识粒子群算法

2024-08-23 12:48
文章标签 算法 初识 粒子

本文主要是介绍初识粒子群算法,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、简介  

  粒子群优化算法(PSO),它源于对鸟群捕食行为的研究。它的基本核心是利用群体中的个体对信息的共享从而使得整个群体的运动在问题求解空间中产生从无序到有序的演化过程,从而获得问题的最优解。

  假象一个场景:一群鸟进行觅食,而远处有一片玉米地,所有的鸟都不知道玉米地在哪里,但是他们知道自己当前位置距离玉米地有多远。那么找到玉米地的最佳策略就是搜寻目前距离玉米地最近的鸟群的周围区域。PSO就是从这种群体觅食的行为中得到了启示,从而构建的一种优化模型。每个优化问题的解都是搜索空间中的一只鸟,称为“粒子”,而问题的最优解就对应为鸟群要寻找的“玉米地”。所有的粒子都具有一个位置向量(粒子在解空间中的位置)和速度向量(决定下次飞行的方向和速度),并可以根据目标函数来计算当前的所在位置的适应值,可以将其理解为距离“玉米地”的距离。在每次的迭代中,种群中的粒子除了根据自身的“经验”(历史位置)进行学习以外,还可以根据种群中最优粒子的“经验”来学习,从而确定下一次迭代时需要如何调整和改变飞行的方向和速度。就这样逐步迭代,最终整个种群的粒子就会逐步趋于最优解。

二、算法描述

  粒子群算法通过设计一种无质量的粒子来模拟鸟群中的鸟,粒子仅有两个属性:速度V和位置X,速度代表移动的快慢,位置代表移动的方向。每个问题都有一个维数,对应的每个粒子都有一个维数。每个粒子在搜索空间中单独的搜寻最优解,并将其记为当前个体极值Pbest,并将个体极值与整个粒子群的其他粒子共享,找到最优的那个个体极值作为整个粒子群的当前全局最优解Gbest,粒子群中的所有粒子根据自己找到的当前个体极值Pbest和整个粒子群共享的当前全局最优解Gbest来调整自己的速度和位置。主要步骤:1、初始化粒子群;2、评价粒子,即计算适应值;3、寻找个体极值Pbest;4、寻找全局最优解Gbest;5、修改粒子的速度和位置


1、初始化

  首先,我们需要设置最大的速度空间,防止超出最大的区间。位置信息即为整个搜索空间,我们在速度区间和搜索空间上随机初始化速度和位置。设置群体规模m。

2、个体最优解与全局最优解

  个体极值为每个粒子找到的历史上最优的位置信息,并从这些个体历史最优解中找到一个全局最优解,并与历史最优解比较,选出最佳的作为当前的历史最优解。

3、更新速度和位置的公式

更新公式为:


其中, 称为惯性因子, 称为加速常数,一般取 表示区间 上的随机数。 表示第 个变量的个体极值的第 维。 表示全局最优解的第 维。
4、终止条件

  两种终止条件:一是最大代数;二是相邻两代之间的偏差在一个指定的范围内即停止。

三、实例

假设有五个粒子,每个粒子有五个维度。

初始化:

位置

X0=(1,2,3,4,5)

X1=(1,2,3,4,3)

X2=(2,1,3,2,6)

X3=(4,2,6,4,3)

X4=(1,2,5,3,5)

速度

V0=(1,2,3,4,5)

V1=(1,2,3,4,3)

V2=(2,1,3,2,6)

V3=(4,2,6,4,3)

V4=(1,2,5,3,5)

初始适应度

f0=2

f1=3

f2=3

f3=4

f4=5

标准模式,下标表示第几个粒子,上标代表代数

这篇关于初识粒子群算法的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1099422

相关文章

Java中的雪花算法Snowflake解析与实践技巧

《Java中的雪花算法Snowflake解析与实践技巧》本文解析了雪花算法的原理、Java实现及生产实践,涵盖ID结构、位运算技巧、时钟回拨处理、WorkerId分配等关键点,并探讨了百度UidGen... 目录一、雪花算法核心原理1.1 算法起源1.2 ID结构详解1.3 核心特性二、Java实现解析2.

使用雪花算法产生id导致前端精度缺失问题解决方案

《使用雪花算法产生id导致前端精度缺失问题解决方案》雪花算法由Twitter提出,设计目的是生成唯一的、递增的ID,下面:本文主要介绍使用雪花算法产生id导致前端精度缺失问题的解决方案,文中通过代... 目录一、问题根源二、解决方案1. 全局配置Jackson序列化规则2. 实体类必须使用Long封装类3.

Springboot实现推荐系统的协同过滤算法

《Springboot实现推荐系统的协同过滤算法》协同过滤算法是一种在推荐系统中广泛使用的算法,用于预测用户对物品(如商品、电影、音乐等)的偏好,从而实现个性化推荐,下面给大家介绍Springboot... 目录前言基本原理 算法分类 计算方法应用场景 代码实现 前言协同过滤算法(Collaborativ

openCV中KNN算法的实现

《openCV中KNN算法的实现》KNN算法是一种简单且常用的分类算法,本文主要介绍了openCV中KNN算法的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的... 目录KNN算法流程使用OpenCV实现KNNOpenCV 是一个开源的跨平台计算机视觉库,它提供了各

springboot+dubbo实现时间轮算法

《springboot+dubbo实现时间轮算法》时间轮是一种高效利用线程资源进行批量化调度的算法,本文主要介绍了springboot+dubbo实现时间轮算法,文中通过示例代码介绍的非常详细,对大家... 目录前言一、参数说明二、具体实现1、HashedwheelTimer2、createWheel3、n

SpringBoot实现MD5加盐算法的示例代码

《SpringBoot实现MD5加盐算法的示例代码》加盐算法是一种用于增强密码安全性的技术,本文主要介绍了SpringBoot实现MD5加盐算法的示例代码,文中通过示例代码介绍的非常详细,对大家的学习... 目录一、什么是加盐算法二、如何实现加盐算法2.1 加盐算法代码实现2.2 注册页面中进行密码加盐2.

Java时间轮调度算法的代码实现

《Java时间轮调度算法的代码实现》时间轮是一种高效的定时调度算法,主要用于管理延时任务或周期性任务,它通过一个环形数组(时间轮)和指针来实现,将大量定时任务分摊到固定的时间槽中,极大地降低了时间复杂... 目录1、简述2、时间轮的原理3. 时间轮的实现步骤3.1 定义时间槽3.2 定义时间轮3.3 使用时

如何通过Golang的container/list实现LRU缓存算法

《如何通过Golang的container/list实现LRU缓存算法》文章介绍了Go语言中container/list包实现的双向链表,并探讨了如何使用链表实现LRU缓存,LRU缓存通过维护一个双向... 目录力扣:146. LRU 缓存主要结构 List 和 Element常用方法1. 初始化链表2.

golang字符串匹配算法解读

《golang字符串匹配算法解读》文章介绍了字符串匹配算法的原理,特别是Knuth-Morris-Pratt(KMP)算法,该算法通过构建模式串的前缀表来减少匹配时的不必要的字符比较,从而提高效率,在... 目录简介KMP实现代码总结简介字符串匹配算法主要用于在一个较长的文本串中查找一个较短的字符串(称为

通俗易懂的Java常见限流算法具体实现

《通俗易懂的Java常见限流算法具体实现》:本文主要介绍Java常见限流算法具体实现的相关资料,包括漏桶算法、令牌桶算法、Nginx限流和Redis+Lua限流的实现原理和具体步骤,并比较了它们的... 目录一、漏桶算法1.漏桶算法的思想和原理2.具体实现二、令牌桶算法1.令牌桶算法流程:2.具体实现2.1