【算法】二叉树(满二叉树和完全二叉树)、堆(堆的向下调整)、堆排序、堆的内置模块heapq

2024-08-23 10:44

本文主要是介绍【算法】二叉树(满二叉树和完全二叉树)、堆(堆的向下调整)、堆排序、堆的内置模块heapq,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1 二叉树
1.1 满二叉树和完全二叉树
1.2 堆的向下调整
2 堆排序
3 堆的内置模块

1 二叉树

二叉树是一种树形数据结构,其中每个节点最多有两个子节点,分别称为左子节点和右子节点。二叉树的常见类型包括:
1. **普通二叉树**:任意一种二叉树,没有特定的性质约束。
2. **完全二叉树**:除了最后一层,其他层的节点都是满的,且最后一层的节点尽可能向左排列。
3. **满二叉树**:每一层的节点数都达到最大值,即每个节点要么有两个子节点,要么没有子节点。
4. **平衡二叉树(AVL树)**:一种自平衡的二叉搜索树,任何节点的两个子树的高度差不超过1。
5. **二叉搜索树(BST)**:对于每个节点,左子节点的值小于该节点的值,右子节点的值大于该节点的值。
6. **红黑树**:一种特殊的二叉搜索树,通过额外的“红”或“黑”标记来保持树的平衡,使得最长路径不超过最短路径的两倍。这些二叉树类型在算法和数据结构中用于实现高效的搜索、排序和数据管理操作。

1.1 满二叉树和完全二叉树

在这里插入图片描述

在这里插入图片描述

1.2 堆的向下调整

在这里插入图片描述

向下调整为下图注意观察树的变化

在这里插入图片描述

2 堆排序

"""
满二叉树:一个二叉树,如果每一个层的结点数都达到最大值,则这个二叉树就是满二叉树。
完全二叉树:叶节点只能出现在最下层的次下层,并且最下面一层的结点都集中在该层最左边的若干位置的二叉树。二叉树的存储方式:链式存储方式顺序存储方式堆:一种特殊的完全二叉树堆排序(Heap Sort)是一种基于堆数据结构的比较排序算法,具有优良的时间复杂度表现。
堆是一种特殊的完全二叉树结构,可以分为两种类型:
最大堆:每个节点的值都大于或等于其子节点的值。
最小堆:每个节点的值都小于或等于其子节点的值。堆排序通常使用最大堆来进行排序。
其基本步骤如下:
步骤1:构建最大堆首先,将待排序数组构建成最大堆。这一步的目的是将数组中的最大元素移动到根节点(即数组的第一个位置)。
步骤2:交换堆顶元素和最后一个元素将堆顶(最大元素)与堆的最后一个元素交换,然后将堆的大小减一,排除最后一个元素,因为它已经处于正确的位置。
步骤3:调整堆对堆顶元素进行调整,使剩余的元素仍然保持最大堆的性质。这个过程通常称为“堆化”或“下沉”。
步骤4:重复步骤2和步骤3重复步骤2和步骤3,直到所有元素都排好序。时间复杂度堆排序的时间复杂度为 O(nlogn),其中 n 是待排序元素的数量。它在最坏、最好和平均情况下的时间复杂度都是 O(nlogn),并且它是一种不稳定的排序算法。
"""def sift(li: list, low: int, high: int):""":param li:列表:param low:堆的根节点位置:param high:堆的最后一个元素的位置:return:"""i = low  # i最开始指向根节点j = 2 * i + 1  # j开始是左孩子tmp = li[low]  # 把堆顶存起来while j <= high:  # 只要j位置有数if j + 1 <= high and li[j + 1] > li[j]:  # 如果右孩子有并且比较大j = j + 1  # j指向右孩子if li[j] > tmp:li[i] = li[j]i = j  # 往下看一层j = 2 * i + 1else:  # tmp更大,把tmp放到i的位置上li[i] = tmp  # 把tmp放到某一级领导位置上breakelse:li[i] = tmp  # 把tmp放到叶子节点上def heap_sort(li: list):n = len(li)for i in range((n - 2) // 2, -1, -1):# i表示建堆的时候调整的部分的根的下标sift(li, i, n - 1)# 建堆完成了print(li)for i in range(n - 1, -1, -1):# i 指向当前堆的最后一个元素li[0], li[i] = li[i], li[0]sift(li, 0, i - 1)  # i-1是新的highli = [i for i in range(100)]
import randomrandom.shuffle(li)
print(li)
heap_sort(li)
print(li)

3 堆的内置模块

import heapq  # q->queue 优先队列
import randomli = list(range(100))
random.shuffle(li)print(li)heapq.heapify(li)  # 建堆n = len(li)
for i in range(n):print(heapq.heappop(li), end=',')

这篇关于【算法】二叉树(满二叉树和完全二叉树)、堆(堆的向下调整)、堆排序、堆的内置模块heapq的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1099154

相关文章

一文深入详解Python的secrets模块

《一文深入详解Python的secrets模块》在构建涉及用户身份认证、权限管理、加密通信等系统时,开发者最不能忽视的一个问题就是“安全性”,Python在3.6版本中引入了专门面向安全用途的secr... 目录引言一、背景与动机:为什么需要 secrets 模块?二、secrets 模块的核心功能1. 基

如何确定哪些软件是Mac系统自带的? Mac系统内置应用查看技巧

《如何确定哪些软件是Mac系统自带的?Mac系统内置应用查看技巧》如何确定哪些软件是Mac系统自带的?mac系统中有很多自带的应用,想要看看哪些是系统自带,该怎么查看呢?下面我们就来看看Mac系统内... 在MAC电脑上,可以使用以下方法来确定哪些软件是系统自带的:1.应用程序文件夹打开应用程序文件夹

Python使用Reflex构建现代Web应用的完全指南

《Python使用Reflex构建现代Web应用的完全指南》这篇文章为大家深入介绍了Reflex框架的设计理念,技术特性,项目结构,核心API,实际开发流程以及与其他框架的对比和部署建议,感兴趣的小伙... 目录什么是 ReFlex?为什么选择 Reflex?安装与环境配置构建你的第一个应用核心概念解析组件

Python logging模块使用示例详解

《Pythonlogging模块使用示例详解》Python的logging模块是一个灵活且强大的日志记录工具,广泛应用于应用程序的调试、运行监控和问题排查,下面给大家介绍Pythonlogging模... 目录一、为什么使用 logging 模块?二、核心组件三、日志级别四、基本使用步骤五、快速配置(bas

Python日期和时间完全指南与实战

《Python日期和时间完全指南与实战》在软件开发领域,‌日期时间处理‌是贯穿系统设计全生命周期的重要基础能力,本文将深入解析Python日期时间的‌七大核心模块‌,通过‌企业级代码案例‌揭示最佳实践... 目录一、背景与核心价值二、核心模块详解与实战2.1 datetime模块四剑客2.2 时区处理黄金法

使用雪花算法产生id导致前端精度缺失问题解决方案

《使用雪花算法产生id导致前端精度缺失问题解决方案》雪花算法由Twitter提出,设计目的是生成唯一的、递增的ID,下面:本文主要介绍使用雪花算法产生id导致前端精度缺失问题的解决方案,文中通过代... 目录一、问题根源二、解决方案1. 全局配置Jackson序列化规则2. 实体类必须使用Long封装类3.

Android NDK版本迭代与FFmpeg交叉编译完全指南

《AndroidNDK版本迭代与FFmpeg交叉编译完全指南》在Android开发中,使用NDK进行原生代码开发是一项常见需求,特别是当我们需要集成FFmpeg这样的多媒体处理库时,本文将深入分析A... 目录一、android NDK版本迭代分界线二、FFmpeg交叉编译关键注意事项三、完整编译脚本示例四

Springboot实现推荐系统的协同过滤算法

《Springboot实现推荐系统的协同过滤算法》协同过滤算法是一种在推荐系统中广泛使用的算法,用于预测用户对物品(如商品、电影、音乐等)的偏好,从而实现个性化推荐,下面给大家介绍Springboot... 目录前言基本原理 算法分类 计算方法应用场景 代码实现 前言协同过滤算法(Collaborativ

Python datetime 模块概述及应用场景

《Pythondatetime模块概述及应用场景》Python的datetime模块是标准库中用于处理日期和时间的核心模块,本文给大家介绍Pythondatetime模块概述及应用场景,感兴趣的朋... 目录一、python datetime 模块概述二、datetime 模块核心类解析三、日期时间格式化与

Python如何调用指定路径的模块

《Python如何调用指定路径的模块》要在Python中调用指定路径的模块,可以使用sys.path.append,importlib.util.spec_from_file_location和exe... 目录一、sys.path.append() 方法1. 方法简介2. 使用示例3. 注意事项二、imp