回归预测|基于NGO-TCN-BiGRU-Attention的数据预测Matlab程序 多特征输入单输出 含基础模型

本文主要是介绍回归预测|基于NGO-TCN-BiGRU-Attention的数据预测Matlab程序 多特征输入单输出 含基础模型,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

回归预测|基于NGO-TCN-BiGRU-Attention的数据预测Matlab程序 多特征输入单输出 含基础模型

文章目录

  • 前言
    • 回归预测|基于NGO-TCN-BiGRU-Attention的数据预测Matlab程序 多特征输入单输出 含基础模型
  • 一、NGO-TCN-BiGRU-Attention模型
      • NGO-TCN-BiGRU-Attention 模型详细流程和原理
      • 1. NGO(北方苍鹰优化算法)
      • 2. TCN(时域卷积网络)
      • 3. BiGRU(双向门控循环单元)
      • 4. Attention(注意力机制)
      • 5. 综合建模流程
      • 总结
  • 二、实验结果
  • 三、核心代码
  • 四、代码获取
  • 五、总结


前言

回归预测|基于NGO-TCN-BiGRU-Attention的数据预测Matlab程序 多特征输入单输出 含基础模型

一、NGO-TCN-BiGRU-Attention模型

本文介绍了一种基于NGO-TCN-BiGRU-Attention技术的数据回归预测Matlab程序,该程序可以实现多特征输入、单输出,并包含基础模型。该技术可以应用于多种领域的数据预测,例如金融、气象、医疗等。在该模型中,利用北方苍鹰优化算法来优化模型参数,同时采用时域卷积、双向门控递归单元和自注意力机制等技术来提高预测准确率。通过实验结果,该模型在回归预测方面取得了非常优异的效果。

NGO-TCN-BiGRU-Attention 模型详细流程和原理

NGO-TCN-BiGRU-Attention 模型结合了北方苍鹰优化算法(NGO)、时域卷积网络(TCN)、双向门控循环单元(BiGRU)和注意力机制,用于回归预测。下面详细描述这些组件的原理和建模流程:

1. NGO(北方苍鹰优化算法)

目的:优化模型参数以提升预测性能。

原理

  • 模拟苍鹰的猎食行为进行超参数优化。
  • 包括初始化种群、适应度评估、选择和更新等步骤。

流程

  1. 初始化:生成初始种群。
  2. 评估:计算适应度(例如预测误差)。
  3. 更新:基于猎食行为更新种群。
  4. 迭代:重复更新直到满足停止条件。

2. TCN(时域卷积网络)

目的:处理序列数据,捕捉长程依赖特征。

原理

  • 使用卷积操作代替传统的递归结构来处理序列数据。
  • 通过卷积层和因果卷积捕捉序列中的时间依赖性,避免了长序列训练中的梯度消失问题。

流程

  1. 卷积操作:对输入序列应用卷积核,生成特征图。
  2. 因果卷积:确保输出仅依赖于当前及过去的输入数据。
  3. 激活函数:如ReLU,用于非线性变换。

3. BiGRU(双向门控循环单元)

目的:处理序列数据中的时间依赖性,捕捉双向上下文信息。

原理

  • 双向GRU包含两个GRU层,分别处理序列的正向和反向信息。
  • 通过拼接或加权平均正向和反向的输出,捕捉完整的上下文信息。

流程

  1. 正向GRU:处理序列从前到后的信息。
  2. 反向GRU:处理序列从后到前的信息。
  3. 融合输出:结合正向和反向的输出进行进一步处理。

4. Attention(注意力机制)

目的:增强模型对重要信息的关注能力。

原理

  • 动态计算注意力权重来调整对输入特征的关注程度。
  • 使用注意力权重对输入进行加权求和,生成加权特征。

流程

  1. 计算注意力权重:根据输入特征计算注意力分数。
  2. 加权求和:使用注意力权重对输入特征进行加权。
  3. 输出:生成加权后的特征表示,用于预测。

5. 综合建模流程

1. 数据预处理

  • 处理缺失值和异常值。
  • 标准化输入特征数据。

2. 特征提取

  • 使用 TCN 对输入数据进行时域卷积操作,提取时间序列特征。

3. 序列建模

  • 将卷积提取的特征输入到 BiGRU 网络中,处理时间序列的双向依赖。

4. 注意力机制应用

  • BiGRU 的输出上应用 Attention 机制,增强对关键特征的关注。

5. 参数优化

  • 使用 NGO 优化 TCNBiGRUAttention 机制的超参数。

6. 模型训练

  • 将处理后的数据输入到组合模型中进行训练,优化损失函数(如均方误差)。

7. 模型预测

  • 使用训练好的模型对新数据进行回归预测。

8. 模型评估

  • 评估模型的预测性能,使用指标如均方误差(MSE)等。

总结

NGO-TCN-BiGRU-Attention 模型通过 TCN 提取时域特征,BiGRU 处理双向时间依赖,Attention 机制关注重要特征,NGO 优化参数,实现高效的回归预测。模型的主要流程包括数据预处理、特征提取、序列建模、注意力机制应用、参数优化、训练、预测和评估。

二、实验结果

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

三、核心代码


%%  数据分析
num_size = 0.8;                              % 训练集占数据集比例
outdim = 1;                                  % 最后一列为输出
num_samples = size(res, 1);                  % 样本个数
num_train_s = round(num_size * num_samples); % 训练集样本个数
f_ = size(res, 2) - outdim;                  % 输入特征维度%%  划分训练集和测试集
P_train = res(1: num_train_s, 1: f_)';
T_train = res(1: num_train_s, f_ + 1: end)';
M = size(P_train, 2);P_test = res(num_train_s + 1: end, 1: f_)';
T_test = res(num_train_s + 1: end, f_ + 1: end)';
N = size(P_test, 2);%%  数据归一化
[p_train, ps_input] = mapminmax(P_train, 0, 1);
p_test = mapminmax('apply', P_test, ps_input);[t_train, ps_output] = mapminmax(T_train, 0, 1);
t_test = mapminmax('apply', T_test, ps_output);%%  数据格式转换
pc_train{1,1} = p_train;
pc_test{1,1} = p_test;%%  参数设置
fun = @getObjValue;                                 % 目标函数
dim = 5;                                            % 优化参数个数

四、代码获取

私信即可

五、总结

包括但不限于
优化BP神经网络,深度神经网络DNN,极限学习机ELM,鲁棒极限学习机RELM,核极限学习机KELM,混合核极限学习机HKELM,支持向量机SVR,相关向量机RVM,最小二乘回归PLS,最小二乘支持向量机LSSVM,LightGBM,Xgboost,RBF径向基神经网络,概率神经网络PNN,GRNN,Elman,随机森林RF,卷积神经网络CNN,长短期记忆网络LSTM,BiLSTM,GRU,BiGRU,TCN,BiTCN,CNN-LSTM,TCN-LSTM,BiTCN-BiGRU,LSTM–Attention,VMD–LSTM,PCA–BP等等

用于数据的分类,时序,回归预测。
多特征输入,单输出,多输出

这篇关于回归预测|基于NGO-TCN-BiGRU-Attention的数据预测Matlab程序 多特征输入单输出 含基础模型的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1098647

相关文章

SpringBoot分段处理List集合多线程批量插入数据方式

《SpringBoot分段处理List集合多线程批量插入数据方式》文章介绍如何处理大数据量List批量插入数据库的优化方案:通过拆分List并分配独立线程处理,结合Spring线程池与异步方法提升效率... 目录项目场景解决方案1.实体类2.Mapper3.spring容器注入线程池bejsan对象4.创建

PHP轻松处理千万行数据的方法详解

《PHP轻松处理千万行数据的方法详解》说到处理大数据集,PHP通常不是第一个想到的语言,但如果你曾经需要处理数百万行数据而不让服务器崩溃或内存耗尽,你就会知道PHP用对了工具有多强大,下面小编就... 目录问题的本质php 中的数据流处理:为什么必不可少生成器:内存高效的迭代方式流量控制:避免系统过载一次性

Python的Darts库实现时间序列预测

《Python的Darts库实现时间序列预测》Darts一个集统计、机器学习与深度学习模型于一体的Python时间序列预测库,本文主要介绍了Python的Darts库实现时间序列预测,感兴趣的可以了解... 目录目录一、什么是 Darts?二、安装与基本配置安装 Darts导入基础模块三、时间序列数据结构与

C#实现千万数据秒级导入的代码

《C#实现千万数据秒级导入的代码》在实际开发中excel导入很常见,现代社会中很容易遇到大数据处理业务,所以本文我就给大家分享一下千万数据秒级导入怎么实现,文中有详细的代码示例供大家参考,需要的朋友可... 目录前言一、数据存储二、处理逻辑优化前代码处理逻辑优化后的代码总结前言在实际开发中excel导入很

python获取指定名字的程序的文件路径的两种方法

《python获取指定名字的程序的文件路径的两种方法》本文主要介绍了python获取指定名字的程序的文件路径的两种方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要... 最近在做项目,需要用到给定一个程序名字就可以自动获取到这个程序在Windows系统下的绝对路径,以下

MyBatis-plus处理存储json数据过程

《MyBatis-plus处理存储json数据过程》文章介绍MyBatis-Plus3.4.21处理对象与集合的差异:对象可用内置Handler配合autoResultMap,集合需自定义处理器继承F... 目录1、如果是对象2、如果需要转换的是List集合总结对象和集合分两种情况处理,目前我用的MP的版本

GSON框架下将百度天气JSON数据转JavaBean

《GSON框架下将百度天气JSON数据转JavaBean》这篇文章主要为大家详细介绍了如何在GSON框架下实现将百度天气JSON数据转JavaBean,文中的示例代码讲解详细,感兴趣的小伙伴可以了解下... 目录前言一、百度天气jsON1、请求参数2、返回参数3、属性映射二、GSON属性映射实战1、类对象映

从基础到高级详解Python数值格式化输出的完全指南

《从基础到高级详解Python数值格式化输出的完全指南》在数据分析、金融计算和科学报告领域,数值格式化是提升可读性和专业性的关键技术,本文将深入解析Python中数值格式化输出的相关方法,感兴趣的小伙... 目录引言:数值格式化的核心价值一、基础格式化方法1.1 三种核心格式化方式对比1.2 基础格式化示例

redis-sentinel基础概念及部署流程

《redis-sentinel基础概念及部署流程》RedisSentinel是Redis的高可用解决方案,通过监控主从节点、自动故障转移、通知机制及配置提供,实现集群故障恢复与服务持续可用,核心组件包... 目录一. 引言二. 核心功能三. 核心组件四. 故障转移流程五. 服务部署六. sentinel部署

C# LiteDB处理时间序列数据的高性能解决方案

《C#LiteDB处理时间序列数据的高性能解决方案》LiteDB作为.NET生态下的轻量级嵌入式NoSQL数据库,一直是时间序列处理的优选方案,本文将为大家大家简单介绍一下LiteDB处理时间序列数... 目录为什么选择LiteDB处理时间序列数据第一章:LiteDB时间序列数据模型设计1.1 核心设计原则