回归预测|基于NGO-TCN-BiGRU-Attention的数据预测Matlab程序 多特征输入单输出 含基础模型

本文主要是介绍回归预测|基于NGO-TCN-BiGRU-Attention的数据预测Matlab程序 多特征输入单输出 含基础模型,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

回归预测|基于NGO-TCN-BiGRU-Attention的数据预测Matlab程序 多特征输入单输出 含基础模型

文章目录

  • 前言
    • 回归预测|基于NGO-TCN-BiGRU-Attention的数据预测Matlab程序 多特征输入单输出 含基础模型
  • 一、NGO-TCN-BiGRU-Attention模型
      • NGO-TCN-BiGRU-Attention 模型详细流程和原理
      • 1. NGO(北方苍鹰优化算法)
      • 2. TCN(时域卷积网络)
      • 3. BiGRU(双向门控循环单元)
      • 4. Attention(注意力机制)
      • 5. 综合建模流程
      • 总结
  • 二、实验结果
  • 三、核心代码
  • 四、代码获取
  • 五、总结


前言

回归预测|基于NGO-TCN-BiGRU-Attention的数据预测Matlab程序 多特征输入单输出 含基础模型

一、NGO-TCN-BiGRU-Attention模型

本文介绍了一种基于NGO-TCN-BiGRU-Attention技术的数据回归预测Matlab程序,该程序可以实现多特征输入、单输出,并包含基础模型。该技术可以应用于多种领域的数据预测,例如金融、气象、医疗等。在该模型中,利用北方苍鹰优化算法来优化模型参数,同时采用时域卷积、双向门控递归单元和自注意力机制等技术来提高预测准确率。通过实验结果,该模型在回归预测方面取得了非常优异的效果。

NGO-TCN-BiGRU-Attention 模型详细流程和原理

NGO-TCN-BiGRU-Attention 模型结合了北方苍鹰优化算法(NGO)、时域卷积网络(TCN)、双向门控循环单元(BiGRU)和注意力机制,用于回归预测。下面详细描述这些组件的原理和建模流程:

1. NGO(北方苍鹰优化算法)

目的:优化模型参数以提升预测性能。

原理

  • 模拟苍鹰的猎食行为进行超参数优化。
  • 包括初始化种群、适应度评估、选择和更新等步骤。

流程

  1. 初始化:生成初始种群。
  2. 评估:计算适应度(例如预测误差)。
  3. 更新:基于猎食行为更新种群。
  4. 迭代:重复更新直到满足停止条件。

2. TCN(时域卷积网络)

目的:处理序列数据,捕捉长程依赖特征。

原理

  • 使用卷积操作代替传统的递归结构来处理序列数据。
  • 通过卷积层和因果卷积捕捉序列中的时间依赖性,避免了长序列训练中的梯度消失问题。

流程

  1. 卷积操作:对输入序列应用卷积核,生成特征图。
  2. 因果卷积:确保输出仅依赖于当前及过去的输入数据。
  3. 激活函数:如ReLU,用于非线性变换。

3. BiGRU(双向门控循环单元)

目的:处理序列数据中的时间依赖性,捕捉双向上下文信息。

原理

  • 双向GRU包含两个GRU层,分别处理序列的正向和反向信息。
  • 通过拼接或加权平均正向和反向的输出,捕捉完整的上下文信息。

流程

  1. 正向GRU:处理序列从前到后的信息。
  2. 反向GRU:处理序列从后到前的信息。
  3. 融合输出:结合正向和反向的输出进行进一步处理。

4. Attention(注意力机制)

目的:增强模型对重要信息的关注能力。

原理

  • 动态计算注意力权重来调整对输入特征的关注程度。
  • 使用注意力权重对输入进行加权求和,生成加权特征。

流程

  1. 计算注意力权重:根据输入特征计算注意力分数。
  2. 加权求和:使用注意力权重对输入特征进行加权。
  3. 输出:生成加权后的特征表示,用于预测。

5. 综合建模流程

1. 数据预处理

  • 处理缺失值和异常值。
  • 标准化输入特征数据。

2. 特征提取

  • 使用 TCN 对输入数据进行时域卷积操作,提取时间序列特征。

3. 序列建模

  • 将卷积提取的特征输入到 BiGRU 网络中,处理时间序列的双向依赖。

4. 注意力机制应用

  • BiGRU 的输出上应用 Attention 机制,增强对关键特征的关注。

5. 参数优化

  • 使用 NGO 优化 TCNBiGRUAttention 机制的超参数。

6. 模型训练

  • 将处理后的数据输入到组合模型中进行训练,优化损失函数(如均方误差)。

7. 模型预测

  • 使用训练好的模型对新数据进行回归预测。

8. 模型评估

  • 评估模型的预测性能,使用指标如均方误差(MSE)等。

总结

NGO-TCN-BiGRU-Attention 模型通过 TCN 提取时域特征,BiGRU 处理双向时间依赖,Attention 机制关注重要特征,NGO 优化参数,实现高效的回归预测。模型的主要流程包括数据预处理、特征提取、序列建模、注意力机制应用、参数优化、训练、预测和评估。

二、实验结果

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

三、核心代码


%%  数据分析
num_size = 0.8;                              % 训练集占数据集比例
outdim = 1;                                  % 最后一列为输出
num_samples = size(res, 1);                  % 样本个数
num_train_s = round(num_size * num_samples); % 训练集样本个数
f_ = size(res, 2) - outdim;                  % 输入特征维度%%  划分训练集和测试集
P_train = res(1: num_train_s, 1: f_)';
T_train = res(1: num_train_s, f_ + 1: end)';
M = size(P_train, 2);P_test = res(num_train_s + 1: end, 1: f_)';
T_test = res(num_train_s + 1: end, f_ + 1: end)';
N = size(P_test, 2);%%  数据归一化
[p_train, ps_input] = mapminmax(P_train, 0, 1);
p_test = mapminmax('apply', P_test, ps_input);[t_train, ps_output] = mapminmax(T_train, 0, 1);
t_test = mapminmax('apply', T_test, ps_output);%%  数据格式转换
pc_train{1,1} = p_train;
pc_test{1,1} = p_test;%%  参数设置
fun = @getObjValue;                                 % 目标函数
dim = 5;                                            % 优化参数个数

四、代码获取

私信即可

五、总结

包括但不限于
优化BP神经网络,深度神经网络DNN,极限学习机ELM,鲁棒极限学习机RELM,核极限学习机KELM,混合核极限学习机HKELM,支持向量机SVR,相关向量机RVM,最小二乘回归PLS,最小二乘支持向量机LSSVM,LightGBM,Xgboost,RBF径向基神经网络,概率神经网络PNN,GRNN,Elman,随机森林RF,卷积神经网络CNN,长短期记忆网络LSTM,BiLSTM,GRU,BiGRU,TCN,BiTCN,CNN-LSTM,TCN-LSTM,BiTCN-BiGRU,LSTM–Attention,VMD–LSTM,PCA–BP等等

用于数据的分类,时序,回归预测。
多特征输入,单输出,多输出

这篇关于回归预测|基于NGO-TCN-BiGRU-Attention的数据预测Matlab程序 多特征输入单输出 含基础模型的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!


原文地址:
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.chinasem.cn/article/1098647

相关文章

从基础到进阶详解Pandas时间数据处理指南

《从基础到进阶详解Pandas时间数据处理指南》Pandas构建了完整的时间数据处理生态,核心由四个基础类构成,Timestamp,DatetimeIndex,Period和Timedelta,下面我... 目录1. 时间数据类型与基础操作1.1 核心时间对象体系1.2 时间数据生成技巧2. 时间索引与数据

使用SpringBoot整合Sharding Sphere实现数据脱敏的示例

《使用SpringBoot整合ShardingSphere实现数据脱敏的示例》ApacheShardingSphere数据脱敏模块,通过SQL拦截与改写实现敏感信息加密存储,解决手动处理繁琐及系统改... 目录痛点一:痛点二:脱敏配置Quick Start——Spring 显示配置:1.引入依赖2.创建脱敏

安装centos8设置基础软件仓库时出错的解决方案

《安装centos8设置基础软件仓库时出错的解决方案》:本文主要介绍安装centos8设置基础软件仓库时出错的解决方案,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐... 目录安装Centos8设置基础软件仓库时出错版本 8版本 8.2.200android4版本 javas

python编写朋克风格的天气查询程序

《python编写朋克风格的天气查询程序》这篇文章主要为大家详细介绍了一个基于Python的桌面应用程序,使用了tkinter库来创建图形用户界面并通过requests库调用Open-MeteoAPI... 目录工具介绍工具使用说明python脚本内容如何运行脚本工具介绍这个天气查询工具是一个基于 Pyt

Ubuntu设置程序开机自启动的操作步骤

《Ubuntu设置程序开机自启动的操作步骤》在部署程序到边缘端时,我们总希望可以通电即启动我们写好的程序,本篇博客用以记录如何在ubuntu开机执行某条命令或者某个可执行程序,需要的朋友可以参考下... 目录1、概述2、图形界面设置3、设置为Systemd服务1、概述测试环境:Ubuntu22.04 带图

详解如何使用Python构建从数据到文档的自动化工作流

《详解如何使用Python构建从数据到文档的自动化工作流》这篇文章将通过真实工作场景拆解,为大家展示如何用Python构建自动化工作流,让工具代替人力完成这些数字苦力活,感兴趣的小伙伴可以跟随小编一起... 目录一、Excel处理:从数据搬运工到智能分析师二、PDF处理:文档工厂的智能生产线三、邮件自动化:

Python数据分析与可视化的全面指南(从数据清洗到图表呈现)

《Python数据分析与可视化的全面指南(从数据清洗到图表呈现)》Python是数据分析与可视化领域中最受欢迎的编程语言之一,凭借其丰富的库和工具,Python能够帮助我们快速处理、分析数据并生成高质... 目录一、数据采集与初步探索二、数据清洗的七种武器1. 缺失值处理策略2. 异常值检测与修正3. 数据

pandas实现数据concat拼接的示例代码

《pandas实现数据concat拼接的示例代码》pandas.concat用于合并DataFrame或Series,本文主要介绍了pandas实现数据concat拼接的示例代码,具有一定的参考价值,... 目录语法示例:使用pandas.concat合并数据默认的concat:参数axis=0,join=

Python程序打包exe,单文件和多文件方式

《Python程序打包exe,单文件和多文件方式》:本文主要介绍Python程序打包exe,单文件和多文件方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录python 脚本打成exe文件安装Pyinstaller准备一个ico图标打包方式一(适用于文件较少的程

C#代码实现解析WTGPS和BD数据

《C#代码实现解析WTGPS和BD数据》在现代的导航与定位应用中,准确解析GPS和北斗(BD)等卫星定位数据至关重要,本文将使用C#语言实现解析WTGPS和BD数据,需要的可以了解下... 目录一、代码结构概览1. 核心解析方法2. 位置信息解析3. 经纬度转换方法4. 日期和时间戳解析5. 辅助方法二、L