算法工程师第四十四天(99. 岛屿数量 深搜 99. 岛屿数量 广搜 100.岛屿的最大面积 )

2024-08-22 21:36

本文主要是介绍算法工程师第四十四天(99. 岛屿数量 深搜 99. 岛屿数量 广搜 100.岛屿的最大面积 ),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

参考文献 代码随想录

一、岛屿数量

题目描述

给定一个由 1(陆地)和 0(水)组成的矩阵,你需要计算岛屿的数量。岛屿由水平方向或垂直方向上相邻的陆地连接而成,并且四周都是水域。你可以假设矩阵外均被水包围。

输入描述

第一行包含两个整数 N, M,表示矩阵的行数和列数。

后续 N 行,每行包含 M 个数字,数字为 1 或者 0。

输出描述

输出一个整数,表示岛屿的数量。如果不存在岛屿,则输出 0。

输入示例
4 5
1 1 0 0 0
1 1 0 0 0
0 0 1 0 0
0 0 0 1 1
输出示例
3
提示信息

根据测试案例中所展示,岛屿数量共有 3 个,所以输出 3。

数据范围:

1 <= N, M <= 50

思路分析:遇到一个没有遍历过的节点陆地,计数器就加一,然后把该节点陆地所能遍历到的陆地都标记上。再遇到标记过的陆地节点和海洋节点的时候直接跳过。 这样计数器就是最终岛屿的数量。那么如果把节点陆地所能遍历到的陆地都标记上呢,就可以使用 DFS,BFS或者并查集。

深搜版本:

n, m = map(int, input().split())
grid = []
for i in range(n):grid.append(list(map(int, input().split())))visited = [[False] * m for _ in range(n)]  # 标记哪些已经走过的
direction = [[0, 1], [1, 0], [0, -1], [-1, 0]]  # 四个方向:上、右、下、左  def dfs(x, y):for i, j in direction:  # 从开始的这个点往周围搜x_nex = x +  iy_nex=  y + jif x_nex < 0 or x_nex >= len(grid) or y_nex < 0 or y_nex >= len(grid[0]):  # 一旦x,或者说是y发现超出范围,则不需要往下走,continueif not visited[x_nex][y_nex] and grid[x_nex][y_nex] == 1:  # 如果当前的路并没有走过,那么就从当前点出发,并对对应的标记为truevisited[x_nex][y_nex] = Truedfs(x_nex, y_nex)
res = 0
for i in range(n):for j in range(m):if grid[i][j] == 1 and not visited[i][j]:  # 如果为陆地,并且没有被访问过,那么就要调用深搜模版去寻当前节点周围的陆地res += 1  # 一旦发现新的路段,那么结果就要加1visited[i][j] = True  同时把当前的坐标开始搜索并标记为已经走过dfs(i, j)
print(res)

广搜:

n, m = map(int, input().split())
grid = []
for i in range(n):grid.append(list(map(int, input().split())))visited = [[False] * m for _ in range(n)]
direction = [[0, 1], [1, 0], [0, -1], [-1, 0]]  # 四个方向:上、右、下、左def bfs(x, y):from collections import dequequeen = deque()queen.append([x, y])visited[x][y] = Truewhile queen:cur_x, cur_y = queen.popleft() for i, j in direction:x_nex = cur_x +  iy_nex=  cur_y + jif x_nex < 0 or x_nex >= len(grid) or y_nex < 0 or y_nex >= len(grid[0]):continueif not visited[x_nex][y_nex] and grid[x_nex][y_nex] == 1:queen.append([x_nex, y_nex])visited[x_nex][y_nex] = Trueres = 0
for i in range(n):for j in range(m):if grid[i][j] == 1 and not visited[i][j]:res += 1bfs(i, j)
print(res)

二、岛屿的最大面积

题目描述

给定一个由 1(陆地)和 0(水)组成的矩阵,计算岛屿的最大面积。岛屿面积的计算方式为组成岛屿的陆地的总数。岛屿由水平方向或垂直方向上相邻的陆地连接而成,并且四周都是水域。你可以假设矩阵外均被水包围。

输入描述

第一行包含两个整数 N, M,表示矩阵的行数和列数。后续 N 行,每行包含 M 个数字,数字为 1 或者 0,表示岛屿的单元格。

输出描述

输出一个整数,表示岛屿的最大面积。如果不存在岛屿,则输出 0。

输入示例
4 5
1 1 0 0 0
1 1 0 0 0
0 0 1 0 0
0 0 0 1 1
输出示例
4
提示信息

样例输入中,岛屿的最大面积为 4。

数据范围:

1 <= M, N <= 50。

深搜:

n, m = map(int, input().split())
grid = []
for i in range(n):grid.append(list(map(int, input().split())))visited = [[False] * m for _ in range(n)]
directions = [[0,-1], [0, 1],[-1,0],[1,0]]  # 每个点的方向
res = 0
count = 0
def dfs(x, y):global count # 定义全句变量for i, j in directions:  # 从当前点遍历到走位的陆地nex_x = x + i  nex_y = y + jif nex_y < 0 or nex_x < 0 or nex_x >= len(grid) or nex_y >= len(grid[0]):continue  # 越界了if grid[nex_x][nex_y] == 1 and not visited[nex_x][nex_y]:  # 当前是陆地并且没有被方访问过visited[nex_x][nex_y] = Truecount += 1dfs(nex_x, nex_y)
for i in range(n):for j in range(m):if not visited[i][j] and grid[i][j] == 1:visited[i][j] = True  # count = 1dfs(i, j)res = max(res, count)print(res)

广搜:

n, m = map(int, input().split())
grid = []
for i in range(n):grid.append(list(map(int, input().split())))visited = [[False] * m for _ in range(n)]
directions = [[0,-1], [0, 1],[-1,0],[1,0]]  # 每个点的方向
res = 0
count = 0
def bfs(x, y):from  collections import dequequeen = deque()queen.append([x, y])global count # 定义全句变量while queen:cur_x, cur_y = queen.popleft()for i, j in directions:  # 从当前点遍历到走位的陆地nex_x = cur_x + i  nex_y = cur_y + jif nex_y < 0 or nex_x < 0 or nex_x >= len(grid) or nex_y >= len(grid[0]):continue  # 越界了if grid[nex_x][nex_y] == 1 and not visited[nex_x][nex_y]:  # 当前是陆地并且没有被方访问过visited[nex_x][nex_y] = Truecount += 1queen.append([nex_x, nex_y])
for i in range(n):for j in range(m):if not visited[i][j] and grid[i][j] == 1:visited[i][j] = True  # count = 1bfs(i, j)res = max(res, count)print(res)

这篇关于算法工程师第四十四天(99. 岛屿数量 深搜 99. 岛屿数量 广搜 100.岛屿的最大面积 )的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1097461

相关文章

Java中的雪花算法Snowflake解析与实践技巧

《Java中的雪花算法Snowflake解析与实践技巧》本文解析了雪花算法的原理、Java实现及生产实践,涵盖ID结构、位运算技巧、时钟回拨处理、WorkerId分配等关键点,并探讨了百度UidGen... 目录一、雪花算法核心原理1.1 算法起源1.2 ID结构详解1.3 核心特性二、Java实现解析2.

使用雪花算法产生id导致前端精度缺失问题解决方案

《使用雪花算法产生id导致前端精度缺失问题解决方案》雪花算法由Twitter提出,设计目的是生成唯一的、递增的ID,下面:本文主要介绍使用雪花算法产生id导致前端精度缺失问题的解决方案,文中通过代... 目录一、问题根源二、解决方案1. 全局配置Jackson序列化规则2. 实体类必须使用Long封装类3.

MySQL精准控制Binlog日志数量的三种方案

《MySQL精准控制Binlog日志数量的三种方案》作为数据库管理员,你是否经常为服务器磁盘爆满而抓狂?Binlog就像数据库的“黑匣子”,默默记录着每一次数据变动,但若放任不管,几天内这些日志文件就... 目录 一招修改配置文件:永久生效的控制术1.定位my.cnf文件2.添加核心参数不重启热更新:高手应

Springboot实现推荐系统的协同过滤算法

《Springboot实现推荐系统的协同过滤算法》协同过滤算法是一种在推荐系统中广泛使用的算法,用于预测用户对物品(如商品、电影、音乐等)的偏好,从而实现个性化推荐,下面给大家介绍Springboot... 目录前言基本原理 算法分类 计算方法应用场景 代码实现 前言协同过滤算法(Collaborativ

openCV中KNN算法的实现

《openCV中KNN算法的实现》KNN算法是一种简单且常用的分类算法,本文主要介绍了openCV中KNN算法的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的... 目录KNN算法流程使用OpenCV实现KNNOpenCV 是一个开源的跨平台计算机视觉库,它提供了各

springboot+dubbo实现时间轮算法

《springboot+dubbo实现时间轮算法》时间轮是一种高效利用线程资源进行批量化调度的算法,本文主要介绍了springboot+dubbo实现时间轮算法,文中通过示例代码介绍的非常详细,对大家... 目录前言一、参数说明二、具体实现1、HashedwheelTimer2、createWheel3、n

SpringBoot实现MD5加盐算法的示例代码

《SpringBoot实现MD5加盐算法的示例代码》加盐算法是一种用于增强密码安全性的技术,本文主要介绍了SpringBoot实现MD5加盐算法的示例代码,文中通过示例代码介绍的非常详细,对大家的学习... 目录一、什么是加盐算法二、如何实现加盐算法2.1 加盐算法代码实现2.2 注册页面中进行密码加盐2.

Java时间轮调度算法的代码实现

《Java时间轮调度算法的代码实现》时间轮是一种高效的定时调度算法,主要用于管理延时任务或周期性任务,它通过一个环形数组(时间轮)和指针来实现,将大量定时任务分摊到固定的时间槽中,极大地降低了时间复杂... 目录1、简述2、时间轮的原理3. 时间轮的实现步骤3.1 定义时间槽3.2 定义时间轮3.3 使用时

如何通过Golang的container/list实现LRU缓存算法

《如何通过Golang的container/list实现LRU缓存算法》文章介绍了Go语言中container/list包实现的双向链表,并探讨了如何使用链表实现LRU缓存,LRU缓存通过维护一个双向... 目录力扣:146. LRU 缓存主要结构 List 和 Element常用方法1. 初始化链表2.

golang字符串匹配算法解读

《golang字符串匹配算法解读》文章介绍了字符串匹配算法的原理,特别是Knuth-Morris-Pratt(KMP)算法,该算法通过构建模式串的前缀表来减少匹配时的不必要的字符比较,从而提高效率,在... 目录简介KMP实现代码总结简介字符串匹配算法主要用于在一个较长的文本串中查找一个较短的字符串(称为