【初阶数据结构题目】38. 快速排序-非递归版本

2024-08-22 06:44

本文主要是介绍【初阶数据结构题目】38. 快速排序-非递归版本,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

非递归版本

非递归版本的快速排序需要借助数据结构:栈

思路:

假设我们初始要排序的数是:5 3 9 6 2 4

经过一轮快速排序后,找到的基准值是6,也就是keyi=3

通过一轮快速排序后,接下来要排序的数是2 3 4 5 6 9


如果left=0,right=5,keyi=3

左区间:[left,keyi-1] [0,2]

右区间:[keyi+1,right] [4,5]

先把右区间的right5入栈,然后把右区间的left4入栈

然后把左区间的right2入栈,然后把左区间的left0入栈


此时栈里面是:0 2 4 5


然后出栈两次,取到left=0,right=2

我们对下标为0-2的数找基准值

找到基准值keyi=0


此时left=0,right=2,keyi=1

左区间:[left,keyi-1] [0,-1] 非有效区间,不入栈

右区间:[keyi+1,right] [1,2]

先把右区间的right2入栈,然后把右区间的left1入栈


此时栈里面是:1 2 4 5


然后出栈两次,取到left=1,right=2

我们对下标为1-2的数找基准值

找到基准值keyi=1


此时left=1,right=2,keyi=1

左区间:[left,keyi-1] [1,0] 非有效区间,不入栈

右区间:[keyi+1,right] [2,2] 非有效区间,不入栈


此时栈里面是:4 5


然后出栈两次,取到left=4,right=5

我们对下标为4-5的数找基准值

找到基准值keyi=4


此时left=4,right=5,keyi=4

左区间:[left,keyi-1] [4,3] 非有效区间,不入栈

右区间:[keyi+1,right] [5,5] 非有效区间,不入栈


此时排完序了,是2 3 4 5 6 9

我们销毁函数栈。

代码实现:

Sort.h

#define _CRT_SECURE_NO_WARNINGS 1
#include <stdio.h>
#include<stdlib.h>
#include<time.h>
#include <stdbool.h>
#include <assert.h>//打印
void PrintArr(int* arr, int n);
//非递归版本快排
//--借助数据结构--栈
void QuickSortNonR(int* arr, int left, int right);

Sort.c

#include"Sort.h"//打印
void PrintArr(int* arr, int n)
{for (int i = 0; i < n; i++){printf("%d ", arr[i]);}printf("\n");
}//定义栈的结构
typedef int STDataType;
typedef struct Stack
{STDataType* arr;int capacity;     //栈的空间大小int top;          //栈顶
}ST;//栈的初始化
void STInit(ST* ps)
{assert(ps);ps->arr = NULL;ps->capacity = ps->top = 0;
}//栈顶---入数据,出数据
//入数据
void StackPush(ST* ps, STDataType x)
{assert(ps);//1.判断空间是否足够if (ps->capacity == ps->top){int newCapacity = ps->capacity == 0 ? 4 : 2 * ps->capacity;STDataType* tmp = (STDataType*)realloc(ps->arr, newCapacity * sizeof(STDataType));if (tmp == NULL){perror("realloc fail!");exit(1);}ps->arr = tmp;ps->capacity = newCapacity;}//空间足够ps->arr[ps->top++] = x;
}//判断栈是否为空
bool StackEmpty(ST* ps)
{assert(ps);return ps->top == 0;
}//栈顶出数据
void StackPop(ST* ps)
{assert(ps);assert(!StackEmpty(ps));--ps->top;
}//取栈顶元素
STDataType StackTop(ST* ps)
{assert(ps);assert(!StackEmpty(ps));return ps->arr[ps->top - 1];
}//栈的销毁
void STDestroy(ST* ps)
{assert(ps);if (ps->arr)free(ps->arr);ps->arr = NULL;ps->top = ps->capacity = 0;
}//非递归版本快排
//--借助数据结构--栈
void QuickSortNonR(int* arr, int left, int right)
{ST st;//创建栈STInit(&st);//栈的初始化StackPush(&st, right);//栈顶入数据StackPush(&st, left);//栈顶入数据while (!StackEmpty(&st))//栈不为空就进入循环{//取栈顶元素---取两次int begin = StackTop(&st);StackPop(&st);//栈顶出数据int end = StackTop(&st);StackPop(&st);//栈顶出数据//[begin,end]---找基准值//双指针法int prev = begin;int cur = begin + 1;int keyi = begin;while (cur <= end){if (arr[cur] < arr[keyi] && ++prev != cur)//这里<和<=一样{Swap(&arr[cur], &arr[prev]);}cur++;}Swap(&arr[keyi], &arr[prev]);//上面循环结束说明cur越界了keyi = prev;//根据基准值keyi划分左右区间//左区间:[begin,keyi-1]//右区间:[keyi+1,end]if (keyi + 1 < end){StackPush(&st, end);//右区间入栈StackPush(&st, keyi + 1);//左区间入栈}if (keyi - 1 > begin){StackPush(&st, keyi - 1);//右区间入栈StackPush(&st, begin);//左区间入栈}}STDestroy(&st);//销毁栈
}

test.c

#include"Sort.h"int main()
{int a[] = { 5, 3, 9, 6, 2, 4, 7, 1, 8 };int n = sizeof(a) / sizeof(int);printf("排序前:");PrintArr(a, n);QuickSortNonR(a, 0, n - 1);printf("排序后:");PrintArr(a, n);return 0;
}

这篇关于【初阶数据结构题目】38. 快速排序-非递归版本的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1095532

相关文章

Python版本与package版本兼容性检查方法总结

《Python版本与package版本兼容性检查方法总结》:本文主要介绍Python版本与package版本兼容性检查方法的相关资料,文中提供四种检查方法,分别是pip查询、conda管理、PyP... 目录引言为什么会出现兼容性问题方法一:用 pip 官方命令查询可用版本方法二:conda 管理包环境方法

使用EasyPoi快速导出Word文档功能的实现步骤

《使用EasyPoi快速导出Word文档功能的实现步骤》EasyPoi是一个基于ApachePOI的开源Java工具库,旨在简化Excel和Word文档的操作,本文将详细介绍如何使用EasyPoi快速... 目录一、准备工作1、引入依赖二、准备好一个word模版文件三、编写导出方法的工具类四、在Export

Python一次性将指定版本所有包上传PyPI镜像解决方案

《Python一次性将指定版本所有包上传PyPI镜像解决方案》本文主要介绍了一个安全、完整、可离线部署的解决方案,用于一次性准备指定Python版本的所有包,然后导出到内网环境,感兴趣的小伙伴可以跟随... 目录为什么需要这个方案完整解决方案1. 项目目录结构2. 创建智能下载脚本3. 创建包清单生成脚本4

深度解析Python中递归下降解析器的原理与实现

《深度解析Python中递归下降解析器的原理与实现》在编译器设计、配置文件处理和数据转换领域,递归下降解析器是最常用且最直观的解析技术,本文将详细介绍递归下降解析器的原理与实现,感兴趣的小伙伴可以跟随... 目录引言:解析器的核心价值一、递归下降解析器基础1.1 核心概念解析1.2 基本架构二、简单算术表达

Ubuntu如何升级Python版本

《Ubuntu如何升级Python版本》Ubuntu22.04Docker中,安装Python3.11后,使用update-alternatives设置为默认版本,最后用python3-V验证... 目China编程录问题描述前提环境解决方法总结问题描述Ubuntu22.04系统自带python3.10,想升级

Python多线程实现大文件快速下载的代码实现

《Python多线程实现大文件快速下载的代码实现》在互联网时代,文件下载是日常操作之一,尤其是大文件,然而,网络条件不稳定或带宽有限时,下载速度会变得很慢,本文将介绍如何使用Python实现多线程下载... 目录引言一、多线程下载原理二、python实现多线程下载代码说明:三、实战案例四、注意事项五、总结引

redis数据结构之String详解

《redis数据结构之String详解》Redis以String为基础类型,因C字符串效率低、非二进制安全等问题,采用SDS动态字符串实现高效存储,通过RedisObject封装,支持多种编码方式(如... 目录一、为什么Redis选String作为基础类型?二、SDS底层数据结构三、RedisObject

C#使用Spire.XLS快速生成多表格Excel文件

《C#使用Spire.XLS快速生成多表格Excel文件》在日常开发中,我们经常需要将业务数据导出为结构清晰的Excel文件,本文将手把手教你使用Spire.XLS这个强大的.NET组件,只需几行C#... 目录一、Spire.XLS核心优势清单1.1 性能碾压:从3秒到0.5秒的质变1.2 批量操作的优雅

Mybatis-Plus 3.5.12 分页拦截器消失的问题及快速解决方法

《Mybatis-Plus3.5.12分页拦截器消失的问题及快速解决方法》作为Java开发者,我们都爱用Mybatis-Plus简化CRUD操作,尤其是它的分页功能,几行代码就能搞定复杂的分页查询... 目录一、问题场景:分页拦截器突然 “失踪”二、问题根源:依赖拆分惹的祸三、解决办法:添加扩展依赖四、分页

c++日志库log4cplus快速入门小结

《c++日志库log4cplus快速入门小结》文章浏览阅读1.1w次,点赞9次,收藏44次。本文介绍Log4cplus,一种适用于C++的线程安全日志记录API,提供灵活的日志管理和配置控制。文章涵盖... 目录简介日志等级配置文件使用关于初始化使用示例总结参考资料简介log4j 用于Java,log4c