【开盖即食】多种算法实现画面动静判断(附源码)

2024-08-22 03:12

本文主要是介绍【开盖即食】多种算法实现画面动静判断(附源码),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

前言

大家好,我是cv君,今天想跟大家分享一下,如何实现画面动静判断、判断画面或者物体是否在运动或者是比较静止,简单使用计算机视觉传统方法实现,AI的后续带给大家。我们提供三种方案:

1、背景消除法;

2、光流追踪法;

3、相似度、清晰度变化法;

代码开盖即食,拿来可用,请品尝~

然后我们可以把视频中运动的部分保留,静止的部分扣除;

1、背景消除法;

import cv2
import numpy as np# 配置视频文件路径和输出文件路径
video_path = r"demo3.mp4"
output_video_path = r"demo3.avi"# 打开视频文件
cap = cv2.VideoCapture(video_path)
if not cap.isOpened():print("无法打开视频文件")exit()# 获取视频基本信息
fps = cap.get(cv2.CAP_PROP_FPS)  # 帧率
frame_width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
frame_height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))# 创建背景减除器
bg_subtractor = cv2.createBackgroundSubtractorMOG2(varThreshold=30)
# fgbg = cv2.createBackgroundSubtractorMOG2(varThreshold=30, detectShadows=True)  # 设置输出视频编解码器
fourcc = cv2.VideoWriter_fourcc(*'MJPG')
out = cv2.VideoWriter(output_video_path, fourcc, fps, (frame_width, frame_height))# 处理每一秒的帧
frame_count = 0
seconds_counter = 0
frame_buffer = []while True:ret, frame = cap.read()if not ret:breakframe_count += 1second = int(frame_count // fps)  # 当前秒钟# 应用背景减除器fg_mask = bg_subtractor.apply(frame)# 计算前景区域的像素数量non_zero_count = cv2.countNonZero(fg_mask)# 保存当前帧到缓冲区frame_buffer.append(frame)# 每秒钟结束时判断运动情况if frame_count % 10 == 0:# print(non_zero_count)if non_zero_count > 15000:  # 根据实际情况调整阈值print(f"第 {second} 秒有运动")for f in frame_buffer:out.write(f)  # 将帧写入输出视频else:print(f"第 {second} 秒静止")frame_buffer.clear()  # 清空缓冲区准备处理下一秒的帧# 释放资源
cap.release()
out.release()
cv2.destroyAllWindows()

2、光流追踪法;

import cv2
import numpy as np# 配置视频文件路径和输出文件路径
video_path = r"zjkzlzxjg-1511.ts"
output_video_path = r"demo3.avi"# 打开视频文件
cap = cv2.VideoCapture(video_path)
if not cap.isOpened():print("无法打开视频文件")exit()# 获取视频基本信息
fps = cap.get(cv2.CAP_PROP_FPS)  # 帧率
frame_width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
frame_height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))# 设置输出视频编解码器
fourcc = cv2.VideoWriter_fourcc(*'MJPG')
out = cv2.VideoWriter(output_video_path, fourcc, fps, (frame_width, frame_height))# 读取第一帧
ret, prev_frame = cap.read()
if not ret:print("无法读取视频帧")exit()prev_gray = cv2.cvtColor(prev_frame, cv2.COLOR_BGR2GRAY)# 提取关键点
prev_pts = cv2.goodFeaturesToTrack(prev_gray, maxCorners=1000, qualityLevel=0.3, minDistance=7, blockSize=7)if prev_pts is None:print("无法提取关键点")cap.release()out.release()cv2.destroyAllWindows()exit()
if prev_pts is not None:prev_pts = np.float32(prev_pts).reshape(-1, 1, 2)
# prev_pts = np.int0(prev_pts)frame_buffer = []
frame_count = 0while True:ret, frame = cap.read()if not ret:breakframe_count += 1second = int(frame_count // fps)  # 当前秒钟gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)# 计算光流next_pts, status, err = cv2.calcOpticalFlowPyrLK(prev_gray, gray, prev_pts, None)if next_pts is not None and status is not None:good_prev_pts = prev_pts[status == 1]good_next_pts = next_pts[status == 1]# 计算光流的总变化量displacement = np.linalg.norm(good_next_pts - good_prev_pts, axis=1)non_zero_count = np.sum(displacement > 0.0)  # 根据实际情况调整阈值# 保存当前帧到缓冲区frame_buffer.append(frame)# 每秒钟结束时判断运动情况if frame_count % 15 == 0:if non_zero_count > 0:  # 根据实际情况调整阈值print(f"第 {second} 秒有运动")for f in frame_buffer:out.write(f)  # 将帧写入输出视频else:print(f"第 {second} 秒静止")frame_buffer.clear()  # 清空缓冲区准备处理下一秒的帧prev_gray = grayprev_pts = good_next_pts.reshape(-1, 1, 2)else:print("光流计算失败")# 释放资源
cap.release()
out.release()
cv2.destroyAllWindows()

3、相似度、清晰度变化法;

import cv2
import numpy as np# 配置视频文件路径和输出文件路径
video_path = r"C:\Users\sunhongzhe\Pictures\expandai_move\a.mp4"
output_video_path = r"C:\Users\sunhongzhe\Pictures\expandai_move\a.avi"# 打开视频文件
cap = cv2.VideoCapture(video_path)
if not cap.isOpened():print("无法打开视频文件")exit()# 获取视频基本信息
fps = cap.get(cv2.CAP_PROP_FPS)  # 帧率
frame_width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
frame_height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))# 设置输出视频编解码器
fourcc = cv2.VideoWriter_fourcc(*'MJPG')
out = cv2.VideoWriter(output_video_path, fourcc, fps, (frame_width, frame_height))# 读取第一帧
ret, prev_frame = cap.read()
if not ret:print("无法读取视频帧")exit()prev_gray = cv2.cvtColor(prev_frame, cv2.COLOR_BGR2GRAY)
prev_edges = cv2.Canny(prev_gray, 50, 150)frame_buffer = []
frame_count = 0# 运动检测阈值
motion_threshold = 3000  # 根据实际情况调整while True:ret, frame = cap.read()if not ret:breakframe_count += 1second = int(frame_count // fps)  # 当前秒钟gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)edges = cv2.Canny(gray, 50, 150)# 计算边缘图像的差异diff = cv2.absdiff(prev_edges, edges)non_zero_count = np.sum(diff > 0)# 保存当前帧到缓冲区frame_buffer.append(frame)# 每秒钟结束时判断运动情况if frame_count % 10 == 0:  # 每秒处理一次if non_zero_count > motion_threshold:  # 根据差异判断是否运动print(non_zero_count)print(f"第 {second} 秒有运动")for f in frame_buffer:out.write(f)  # 将帧写入输出视频else:print(f"第 {second} 秒静止")frame_buffer.clear()  # 清空缓冲区准备处理下一秒的帧prev_edges = edges# 释放资源
cap.release()
out.release()
cv2.destroyAllWindows()

开盖即食,大家随便放个运动、静止结合的视频进来,调整一下阈值即可实现动静分离;保留运动的视频,剔除静止的画面

第三个方法,剩下的大家可以用phash等相似度方法同理替换,请查阅我的另一篇文章:
【含泪提速!】一文全解相似度算法、跟踪算法在各个AI场景的应用(附代码)_image.antialias-CSDN博客

三个py的就按测阈值,大家都可以改哦,还有多久判断一次,都可以;

这是实现视频中动静画面区分的;

想要实现一个视频中,哪些画面在东,哪些画面在静止,就可以将画面分成多个区域,分别运算这些个算法,都可以得到哪些地方在动,哪些地方在静止了。

演示效果:原本视频没法上传,原视频15秒,静止部分有5秒,最后处理完后,成功剔除了静止部分的帧,保留下了运动的10秒

最后

最近cv君重新常更,欢迎三连~欢迎大家进入cv君的AI 与计算机视觉世界:DeepAI 视界 里面有几千位AI的朋友,有任何问题都可以交流哦,联系微信zxx15277368495z

这篇关于【开盖即食】多种算法实现画面动静判断(附源码)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1095079

相关文章

Python实现精准提取 PDF中的文本,表格与图片

《Python实现精准提取PDF中的文本,表格与图片》在实际的系统开发中,处理PDF文件不仅限于读取整页文本,还有提取文档中的表格数据,图片或特定区域的内容,下面我们来看看如何使用Python实... 目录安装 python 库提取 PDF 文本内容:获取整页文本与指定区域内容获取页面上的所有文本内容获取

基于Python实现一个Windows Tree命令工具

《基于Python实现一个WindowsTree命令工具》今天想要在Windows平台的CMD命令终端窗口中使用像Linux下的tree命令,打印一下目录结构层级树,然而还真有tree命令,但是发现... 目录引言实现代码使用说明可用选项示例用法功能特点添加到环境变量方法一:创建批处理文件并添加到PATH1

Java使用HttpClient实现图片下载与本地保存功能

《Java使用HttpClient实现图片下载与本地保存功能》在当今数字化时代,网络资源的获取与处理已成为软件开发中的常见需求,其中,图片作为网络上最常见的资源之一,其下载与保存功能在许多应用场景中都... 目录引言一、Apache HttpClient简介二、技术栈与环境准备三、实现图片下载与保存功能1.

python判断文件是否存在常用的几种方式

《python判断文件是否存在常用的几种方式》在Python中我们在读写文件之前,首先要做的事情就是判断文件是否存在,否则很容易发生错误的情况,:本文主要介绍python判断文件是否存在常用的几种... 目录1. 使用 os.path.exists()2. 使用 os.path.isfile()3. 使用

canal实现mysql数据同步的详细过程

《canal实现mysql数据同步的详细过程》:本文主要介绍canal实现mysql数据同步的详细过程,本文通过实例图文相结合给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的... 目录1、canal下载2、mysql同步用户创建和授权3、canal admin安装和启动4、canal

Nexus安装和启动的实现教程

《Nexus安装和启动的实现教程》:本文主要介绍Nexus安装和启动的实现教程,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、Nexus下载二、Nexus安装和启动三、关闭Nexus总结一、Nexus下载官方下载链接:DownloadWindows系统根

SpringBoot集成LiteFlow实现轻量级工作流引擎的详细过程

《SpringBoot集成LiteFlow实现轻量级工作流引擎的详细过程》LiteFlow是一款专注于逻辑驱动流程编排的轻量级框架,它以组件化方式快速构建和执行业务流程,有效解耦复杂业务逻辑,下面给大... 目录一、基础概念1.1 组件(Component)1.2 规则(Rule)1.3 上下文(Conte

MySQL 横向衍生表(Lateral Derived Tables)的实现

《MySQL横向衍生表(LateralDerivedTables)的实现》横向衍生表适用于在需要通过子查询获取中间结果集的场景,相对于普通衍生表,横向衍生表可以引用在其之前出现过的表名,本文就来... 目录一、横向衍生表用法示例1.1 用法示例1.2 使用建议前面我们介绍过mysql中的衍生表(From子句

Mybatis的分页实现方式

《Mybatis的分页实现方式》MyBatis的分页实现方式主要有以下几种,每种方式适用于不同的场景,且在性能、灵活性和代码侵入性上有所差异,对Mybatis的分页实现方式感兴趣的朋友一起看看吧... 目录​1. 原生 SQL 分页(物理分页)​​2. RowBounds 分页(逻辑分页)​​3. Page

Python基于微信OCR引擎实现高效图片文字识别

《Python基于微信OCR引擎实现高效图片文字识别》这篇文章主要为大家详细介绍了一款基于微信OCR引擎的图片文字识别桌面应用开发全过程,可以实现从图片拖拽识别到文字提取,感兴趣的小伙伴可以跟随小编一... 目录一、项目概述1.1 开发背景1.2 技术选型1.3 核心优势二、功能详解2.1 核心功能模块2.