【开盖即食】多种算法实现画面动静判断(附源码)

2024-08-22 03:12

本文主要是介绍【开盖即食】多种算法实现画面动静判断(附源码),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

前言

大家好,我是cv君,今天想跟大家分享一下,如何实现画面动静判断、判断画面或者物体是否在运动或者是比较静止,简单使用计算机视觉传统方法实现,AI的后续带给大家。我们提供三种方案:

1、背景消除法;

2、光流追踪法;

3、相似度、清晰度变化法;

代码开盖即食,拿来可用,请品尝~

然后我们可以把视频中运动的部分保留,静止的部分扣除;

1、背景消除法;

import cv2
import numpy as np# 配置视频文件路径和输出文件路径
video_path = r"demo3.mp4"
output_video_path = r"demo3.avi"# 打开视频文件
cap = cv2.VideoCapture(video_path)
if not cap.isOpened():print("无法打开视频文件")exit()# 获取视频基本信息
fps = cap.get(cv2.CAP_PROP_FPS)  # 帧率
frame_width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
frame_height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))# 创建背景减除器
bg_subtractor = cv2.createBackgroundSubtractorMOG2(varThreshold=30)
# fgbg = cv2.createBackgroundSubtractorMOG2(varThreshold=30, detectShadows=True)  # 设置输出视频编解码器
fourcc = cv2.VideoWriter_fourcc(*'MJPG')
out = cv2.VideoWriter(output_video_path, fourcc, fps, (frame_width, frame_height))# 处理每一秒的帧
frame_count = 0
seconds_counter = 0
frame_buffer = []while True:ret, frame = cap.read()if not ret:breakframe_count += 1second = int(frame_count // fps)  # 当前秒钟# 应用背景减除器fg_mask = bg_subtractor.apply(frame)# 计算前景区域的像素数量non_zero_count = cv2.countNonZero(fg_mask)# 保存当前帧到缓冲区frame_buffer.append(frame)# 每秒钟结束时判断运动情况if frame_count % 10 == 0:# print(non_zero_count)if non_zero_count > 15000:  # 根据实际情况调整阈值print(f"第 {second} 秒有运动")for f in frame_buffer:out.write(f)  # 将帧写入输出视频else:print(f"第 {second} 秒静止")frame_buffer.clear()  # 清空缓冲区准备处理下一秒的帧# 释放资源
cap.release()
out.release()
cv2.destroyAllWindows()

2、光流追踪法;

import cv2
import numpy as np# 配置视频文件路径和输出文件路径
video_path = r"zjkzlzxjg-1511.ts"
output_video_path = r"demo3.avi"# 打开视频文件
cap = cv2.VideoCapture(video_path)
if not cap.isOpened():print("无法打开视频文件")exit()# 获取视频基本信息
fps = cap.get(cv2.CAP_PROP_FPS)  # 帧率
frame_width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
frame_height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))# 设置输出视频编解码器
fourcc = cv2.VideoWriter_fourcc(*'MJPG')
out = cv2.VideoWriter(output_video_path, fourcc, fps, (frame_width, frame_height))# 读取第一帧
ret, prev_frame = cap.read()
if not ret:print("无法读取视频帧")exit()prev_gray = cv2.cvtColor(prev_frame, cv2.COLOR_BGR2GRAY)# 提取关键点
prev_pts = cv2.goodFeaturesToTrack(prev_gray, maxCorners=1000, qualityLevel=0.3, minDistance=7, blockSize=7)if prev_pts is None:print("无法提取关键点")cap.release()out.release()cv2.destroyAllWindows()exit()
if prev_pts is not None:prev_pts = np.float32(prev_pts).reshape(-1, 1, 2)
# prev_pts = np.int0(prev_pts)frame_buffer = []
frame_count = 0while True:ret, frame = cap.read()if not ret:breakframe_count += 1second = int(frame_count // fps)  # 当前秒钟gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)# 计算光流next_pts, status, err = cv2.calcOpticalFlowPyrLK(prev_gray, gray, prev_pts, None)if next_pts is not None and status is not None:good_prev_pts = prev_pts[status == 1]good_next_pts = next_pts[status == 1]# 计算光流的总变化量displacement = np.linalg.norm(good_next_pts - good_prev_pts, axis=1)non_zero_count = np.sum(displacement > 0.0)  # 根据实际情况调整阈值# 保存当前帧到缓冲区frame_buffer.append(frame)# 每秒钟结束时判断运动情况if frame_count % 15 == 0:if non_zero_count > 0:  # 根据实际情况调整阈值print(f"第 {second} 秒有运动")for f in frame_buffer:out.write(f)  # 将帧写入输出视频else:print(f"第 {second} 秒静止")frame_buffer.clear()  # 清空缓冲区准备处理下一秒的帧prev_gray = grayprev_pts = good_next_pts.reshape(-1, 1, 2)else:print("光流计算失败")# 释放资源
cap.release()
out.release()
cv2.destroyAllWindows()

3、相似度、清晰度变化法;

import cv2
import numpy as np# 配置视频文件路径和输出文件路径
video_path = r"C:\Users\sunhongzhe\Pictures\expandai_move\a.mp4"
output_video_path = r"C:\Users\sunhongzhe\Pictures\expandai_move\a.avi"# 打开视频文件
cap = cv2.VideoCapture(video_path)
if not cap.isOpened():print("无法打开视频文件")exit()# 获取视频基本信息
fps = cap.get(cv2.CAP_PROP_FPS)  # 帧率
frame_width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
frame_height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))# 设置输出视频编解码器
fourcc = cv2.VideoWriter_fourcc(*'MJPG')
out = cv2.VideoWriter(output_video_path, fourcc, fps, (frame_width, frame_height))# 读取第一帧
ret, prev_frame = cap.read()
if not ret:print("无法读取视频帧")exit()prev_gray = cv2.cvtColor(prev_frame, cv2.COLOR_BGR2GRAY)
prev_edges = cv2.Canny(prev_gray, 50, 150)frame_buffer = []
frame_count = 0# 运动检测阈值
motion_threshold = 3000  # 根据实际情况调整while True:ret, frame = cap.read()if not ret:breakframe_count += 1second = int(frame_count // fps)  # 当前秒钟gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)edges = cv2.Canny(gray, 50, 150)# 计算边缘图像的差异diff = cv2.absdiff(prev_edges, edges)non_zero_count = np.sum(diff > 0)# 保存当前帧到缓冲区frame_buffer.append(frame)# 每秒钟结束时判断运动情况if frame_count % 10 == 0:  # 每秒处理一次if non_zero_count > motion_threshold:  # 根据差异判断是否运动print(non_zero_count)print(f"第 {second} 秒有运动")for f in frame_buffer:out.write(f)  # 将帧写入输出视频else:print(f"第 {second} 秒静止")frame_buffer.clear()  # 清空缓冲区准备处理下一秒的帧prev_edges = edges# 释放资源
cap.release()
out.release()
cv2.destroyAllWindows()

开盖即食,大家随便放个运动、静止结合的视频进来,调整一下阈值即可实现动静分离;保留运动的视频,剔除静止的画面

第三个方法,剩下的大家可以用phash等相似度方法同理替换,请查阅我的另一篇文章:
【含泪提速!】一文全解相似度算法、跟踪算法在各个AI场景的应用(附代码)_image.antialias-CSDN博客

三个py的就按测阈值,大家都可以改哦,还有多久判断一次,都可以;

这是实现视频中动静画面区分的;

想要实现一个视频中,哪些画面在东,哪些画面在静止,就可以将画面分成多个区域,分别运算这些个算法,都可以得到哪些地方在动,哪些地方在静止了。

演示效果:原本视频没法上传,原视频15秒,静止部分有5秒,最后处理完后,成功剔除了静止部分的帧,保留下了运动的10秒

最后

最近cv君重新常更,欢迎三连~欢迎大家进入cv君的AI 与计算机视觉世界:DeepAI 视界 里面有几千位AI的朋友,有任何问题都可以交流哦,联系微信zxx15277368495z

这篇关于【开盖即食】多种算法实现画面动静判断(附源码)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!


原文地址:
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.chinasem.cn/article/1095079

相关文章

Spring Boot 实现 IP 限流的原理、实践与利弊解析

《SpringBoot实现IP限流的原理、实践与利弊解析》在SpringBoot中实现IP限流是一种简单而有效的方式来保障系统的稳定性和可用性,本文给大家介绍SpringBoot实现IP限... 目录一、引言二、IP 限流原理2.1 令牌桶算法2.2 漏桶算法三、使用场景3.1 防止恶意攻击3.2 控制资源

springboot下载接口限速功能实现

《springboot下载接口限速功能实现》通过Redis统计并发数动态调整每个用户带宽,核心逻辑为每秒读取并发送限定数据量,防止单用户占用过多资源,确保整体下载均衡且高效,本文给大家介绍spring... 目录 一、整体目标 二、涉及的主要类/方法✅ 三、核心流程图解(简化) 四、关键代码详解1️⃣ 设置

Nginx 配置跨域的实现及常见问题解决

《Nginx配置跨域的实现及常见问题解决》本文主要介绍了Nginx配置跨域的实现及常见问题解决,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来... 目录1. 跨域1.1 同源策略1.2 跨域资源共享(CORS)2. Nginx 配置跨域的场景2.1

Python中提取文件名扩展名的多种方法实现

《Python中提取文件名扩展名的多种方法实现》在Python编程中,经常会遇到需要从文件名中提取扩展名的场景,Python提供了多种方法来实现这一功能,不同方法适用于不同的场景和需求,包括os.pa... 目录技术背景实现步骤方法一:使用os.path.splitext方法二:使用pathlib模块方法三

CSS实现元素撑满剩余空间的五种方法

《CSS实现元素撑满剩余空间的五种方法》在日常开发中,我们经常需要让某个元素占据容器的剩余空间,本文将介绍5种不同的方法来实现这个需求,并分析各种方法的优缺点,感兴趣的朋友一起看看吧... css实现元素撑满剩余空间的5种方法 在日常开发中,我们经常需要让某个元素占据容器的剩余空间。这是一个常见的布局需求

HTML5 getUserMedia API网页录音实现指南示例小结

《HTML5getUserMediaAPI网页录音实现指南示例小结》本教程将指导你如何利用这一API,结合WebAudioAPI,实现网页录音功能,从获取音频流到处理和保存录音,整个过程将逐步... 目录1. html5 getUserMedia API简介1.1 API概念与历史1.2 功能与优势1.3

Java实现删除文件中的指定内容

《Java实现删除文件中的指定内容》在日常开发中,经常需要对文本文件进行批量处理,其中,删除文件中指定内容是最常见的需求之一,下面我们就来看看如何使用java实现删除文件中的指定内容吧... 目录1. 项目背景详细介绍2. 项目需求详细介绍2.1 功能需求2.2 非功能需求3. 相关技术详细介绍3.1 Ja

使用Python和OpenCV库实现实时颜色识别系统

《使用Python和OpenCV库实现实时颜色识别系统》:本文主要介绍使用Python和OpenCV库实现的实时颜色识别系统,这个系统能够通过摄像头捕捉视频流,并在视频中指定区域内识别主要颜色(红... 目录一、引言二、系统概述三、代码解析1. 导入库2. 颜色识别函数3. 主程序循环四、HSV色彩空间详解

PostgreSQL中MVCC 机制的实现

《PostgreSQL中MVCC机制的实现》本文主要介绍了PostgreSQL中MVCC机制的实现,通过多版本数据存储、快照隔离和事务ID管理实现高并发读写,具有一定的参考价值,感兴趣的可以了解一下... 目录一 MVCC 基本原理python1.1 MVCC 核心概念1.2 与传统锁机制对比二 Postg

SpringBoot整合Flowable实现工作流的详细流程

《SpringBoot整合Flowable实现工作流的详细流程》Flowable是一个使用Java编写的轻量级业务流程引擎,Flowable流程引擎可用于部署BPMN2.0流程定义,创建这些流程定义的... 目录1、流程引擎介绍2、创建项目3、画流程图4、开发接口4.1 Java 类梳理4.2 查看流程图4