Python(PyTorch)物理变化可微分神经算法

2024-08-20 18:44

本文主要是介绍Python(PyTorch)物理变化可微分神经算法,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

🎯要点

🎯使用受控物理变换序列实现可训练分层物理计算 | 🎯多模机械振荡、非线性电子振荡器和光学二次谐波生成神经算法验证 | 🎯训练输入数据,物理系统变换产生输出和可微分数字模型估计损失的梯度 | 🎯多模振荡对输入数据进行可控卷积 | 🎯物理神经算法数学表示、可微分数学模型 | 🎯MNIST和元音数据集评估算法

🍪语言内容分比

在这里插入图片描述
在这里插入图片描述

🍇PyTorch可微分优化

假设张量 x x x是元参数, a a a是普通参数(例如网络参数)。我们有内部损失 L in  = a 0 ⋅ x 2 L ^{\text {in }}=a_0 \cdot x^2 Lin =a0x2 并且我们使用梯度 ∂ L in  ∂ a 0 = x 2 \frac{\partial L ^{\text {in }}}{\partial a_0}=x^2 a0Lin =x2 更新 a a a a 1 = a 0 − η ∂ L in  ∂ a 0 = a 0 − η x 2 a_1=a_0-\eta \frac{\partial L ^{\text {in }}}{\partial a_0}=a_0-\eta x^2 a1=a0ηa0Lin =a0ηx2。然后我们计算外部损失 L out  = a 1 ⋅ x 2 L ^{\text {out }}=a_1 \cdot x^2 Lout =a1x2。因此外部损失到 x x x 的梯度为:
∂ L out  ∂ x = ∂ ( a 1 ⋅ x 2 ) ∂ x = ∂ a 1 ∂ x ⋅ x 2 + a 1 ⋅ ∂ ( x 2 ) ∂ x = ∂ ( a 0 − η x 2 ) ∂ x ⋅ x 2 + ( a 0 − η x 2 ) ⋅ 2 x = ( − η ⋅ 2 x ) ⋅ x 2 + ( a 0 − η x 2 ) ⋅ 2 x = − 4 η x 3 + 2 a 0 x \begin{aligned} \frac{\partial L ^{\text {out }}}{\partial x} & =\frac{\partial\left(a_1 \cdot x^2\right)}{\partial x} \\ & =\frac{\partial a_1}{\partial x} \cdot x^2+a_1 \cdot \frac{\partial\left(x^2\right)}{\partial x} \\ & =\frac{\partial\left(a_0-\eta x^2\right)}{\partial x} \cdot x^2+\left(a_0-\eta x^2\right) \cdot 2 x \\ & =(-\eta \cdot 2 x) \cdot x^2+\left(a_0-\eta x^2\right) \cdot 2 x \\ & =-4 \eta x^3+2 a_0 x \end{aligned} xLout =x(a1x2)=xa1x2+a1x(x2)=x(a0ηx2)x2+(a0ηx2)2x=(η2x)x2+(a0ηx2)2x=4ηx3+2a0x
鉴于上述分析解,让我们使用 TorchOpt 中的 MetaOptimizer 对其进行验证。MetaOptimizer 是我们可微分优化器的主类。它与功能优化器 torchopt.sgdtorchopt.adam 相结合,定义了我们的高级 API torchopt.MetaSGDtorchopt.MetaAdam

首先,定义网络。

from IPython.display import displayimport torch
import torch.nn as nn
import torch.nn.functional as Fimport torchoptclass Net(nn.Module):def __init__(self):super().__init__()self.a = nn.Parameter(torch.tensor(1.0), requires_grad=True)def forward(self, x):return self.a * (x**2)

然后我们声明网络(由 a 参数化)和元参数 x。不要忘记为 x 设置标志 require_grad=True

net = Net()
x = nn.Parameter(torch.tensor(2.0), requires_grad=True)

接下来我们声明元优化器。这里我们展示了定义元优化器的两种等效方法。

optim = torchopt.MetaOptimizer(net, torchopt.sgd(lr=1.0))
optim = torchopt.MetaSGD(net, lr=1.0)

元优化器将网络作为输入并使用方法步骤来更新网络(由a参数化)。最后,我们展示双层流程的工作原理。

inner_loss = net(x)
optim.step(inner_loss)outer_loss = net(x)
outer_loss.backward()
# x.grad = - 4 * lr * x^3 + 2 * a_0 * x
#        = - 4 * 1 * 2^3 + 2 * 1 * 2
#        = -32 + 4
#        = -28
print(f'x.grad = {x.grad!r}')

输出:

x.grad = tensor(-28.)

让我们从与模型无关的元学习算法的核心思想开始。该算法是一种与模型无关的元学习算法,它与任何使用梯度下降训练的模型兼容,并且适用于各种不同的学习问题,包括分类、回归和强化学习。元学习的目标是在各种学习任务上训练模型,以便它仅使用少量训练样本即可解决新的学习任务。

更新规则定义为:

给定微调步骤的学习率 α \alpha α θ \theta θ 应该最小化
L ( θ ) = E T i ∼ p ( T ) [ L T i ( θ i ′ ) ] = E T i ∼ p ( T ) [ L T i ( θ − α ∇ θ L T i ( θ ) ) ] L (\theta)= E _{ T _i \sim p( T )}\left[ L _{ T _i}\left(\theta_i^{\prime}\right)\right]= E _{ T _i \sim p( T )}\left[ L _{ T _i}\left(\theta-\alpha \nabla_\theta L _{ T _i}(\theta)\right)\right] L(θ)=ETip(T)[LTi(θi)]=ETip(T)[LTi(θαθLTi(θ))]
我们首先定义一些与任务、轨迹、状态、动作和迭代相关的参数。

import argparse
from typing import NamedTupleimport gym
import numpy as np
import torch
import torch.optim as optimimport torchopt
from helpers.policy import CategoricalMLPPolicyTASK_NUM = 40
TRAJ_NUM = 20
TRAJ_LEN = 10STATE_DIM = 10
ACTION_DIM = 5GAMMA = 0.99
LAMBDA = 0.95outer_iters = 500
inner_iters = 1

接下来,我们定义一个名为 Traj 的类来表示轨迹,其中包括观察到的状态、采取的操作、采取操作后观察到的状态、获得的奖励以及用于贴现未来奖励的伽玛值。

class Traj(NamedTuple):obs: np.ndarrayacs: np.ndarraynext_obs: np.ndarrayrews: np.ndarraygammas: np.ndarray

评估函数用于评估策略在不同任务上的性能。它使用内部优化器来微调每个任务的策略,然后计算微调前后的奖励。

def evaluate(env, seed, task_num, policy):pre_reward_ls = []post_reward_ls = []inner_opt = torchopt.MetaSGD(policy, lr=0.1)env = gym.make('TabularMDP-v0',num_states=STATE_DIM,num_actions=ACTION_DIM,max_episode_steps=TRAJ_LEN,seed=args.seed,)tasks = env.sample_tasks(num_tasks=task_num)policy_state_dict = torchopt.extract_state_dict(policy)optim_state_dict = torchopt.extract_state_dict(inner_opt)for idx in range(task_num):for _ in range(inner_iters):pre_trajs = sample_traj(env, tasks[idx], policy)inner_loss = a2c_loss(pre_trajs, policy, value_coef=0.5)inner_opt.step(inner_loss)post_trajs = sample_traj(env, tasks[idx], policy)pre_reward_ls.append(np.sum(pre_trajs.rews, axis=0).mean())post_reward_ls.append(np.sum(post_trajs.rews, axis=0).mean())torchopt.recover_state_dict(policy, policy_state_dict)torchopt.recover_state_dict(inner_opt, optim_state_dict)return pre_reward_ls, post_reward_ls

在主函数中,我们初始化环境、策略和优化器。策略是一个简单的 MLP,它输出动作的分类分布。内部优化器用于在微调阶段更新策略参数,外部优化器用于在元训练阶段更新策略参数。性能通过微调前后的奖励来评估。每次外部迭代都会记录并打印训练过程。

def main(args):torch.manual_seed(args.seed)torch.cuda.manual_seed_all(args.seed)env = gym.make('TabularMDP-v0',num_states=STATE_DIM,num_actions=ACTION_DIM,max_episode_steps=TRAJ_LEN,seed=args.seed,)policy = CategoricalMLPPolicy(input_size=STATE_DIM, output_size=ACTION_DIM)inner_opt = torchopt.MetaSGD(policy, lr=0.1)outer_opt = optim.Adam(policy.parameters(), lr=1e-3)train_pre_reward = []train_post_reward = []test_pre_reward = []test_post_reward = []for i in range(outer_iters):tasks = env.sample_tasks(num_tasks=TASK_NUM)train_pre_reward_ls = []train_post_reward_ls = []outer_opt.zero_grad()policy_state_dict = torchopt.extract_state_dict(policy)optim_state_dict = torchopt.extract_state_dict(inner_opt)for idx in range(TASK_NUM):for _ in range(inner_iters):pre_trajs = sample_traj(env, tasks[idx], policy)inner_loss = a2c_loss(pre_trajs, policy, value_coef=0.5)inner_opt.step(inner_loss)post_trajs = sample_traj(env, tasks[idx], policy)outer_loss = a2c_loss(post_trajs, policy, value_coef=0.5)outer_loss.backward()torchopt.recover_state_dict(policy, policy_state_dict)torchopt.recover_state_dict(inner_opt, optim_state_dict)# Loggingtrain_pre_reward_ls.append(np.sum(pre_trajs.rews, axis=0).mean())train_post_reward_ls.append(np.sum(post_trajs.rews, axis=0).mean())outer_opt.step()test_pre_reward_ls, test_post_reward_ls = evaluate(env, args.seed, TASK_NUM, policy)train_pre_reward.append(sum(train_pre_reward_ls) / TASK_NUM)train_post_reward.append(sum(train_post_reward_ls) / TASK_NUM)test_pre_reward.append(sum(test_pre_reward_ls) / TASK_NUM)test_post_reward.append(sum(test_post_reward_ls) / TASK_NUM)print('Train_iters', i)print('train_pre_reward', sum(train_pre_reward_ls) / TASK_NUM)print('train_post_reward', sum(train_post_reward_ls) / TASK_NUM)print('test_pre_reward', sum(test_pre_reward_ls) / TASK_NUM)print('test_post_reward', sum(test_post_reward_ls) / TASK_NUM)

👉参阅、更新:计算思维 | 亚图跨际

这篇关于Python(PyTorch)物理变化可微分神经算法的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1090875

相关文章

Python的Darts库实现时间序列预测

《Python的Darts库实现时间序列预测》Darts一个集统计、机器学习与深度学习模型于一体的Python时间序列预测库,本文主要介绍了Python的Darts库实现时间序列预测,感兴趣的可以了解... 目录目录一、什么是 Darts?二、安装与基本配置安装 Darts导入基础模块三、时间序列数据结构与

Python正则表达式匹配和替换的操作指南

《Python正则表达式匹配和替换的操作指南》正则表达式是处理文本的强大工具,Python通过re模块提供了完整的正则表达式功能,本文将通过代码示例详细介绍Python中的正则匹配和替换操作,需要的朋... 目录基础语法导入re模块基本元字符常用匹配方法1. re.match() - 从字符串开头匹配2.

Python使用FastAPI实现大文件分片上传与断点续传功能

《Python使用FastAPI实现大文件分片上传与断点续传功能》大文件直传常遇到超时、网络抖动失败、失败后只能重传的问题,分片上传+断点续传可以把大文件拆成若干小块逐个上传,并在中断后从已完成分片继... 目录一、接口设计二、服务端实现(FastAPI)2.1 运行环境2.2 目录结构建议2.3 serv

通过Docker容器部署Python环境的全流程

《通过Docker容器部署Python环境的全流程》在现代化开发流程中,Docker因其轻量化、环境隔离和跨平台一致性的特性,已成为部署Python应用的标准工具,本文将详细演示如何通过Docker容... 目录引言一、docker与python的协同优势二、核心步骤详解三、进阶配置技巧四、生产环境最佳实践

Python一次性将指定版本所有包上传PyPI镜像解决方案

《Python一次性将指定版本所有包上传PyPI镜像解决方案》本文主要介绍了一个安全、完整、可离线部署的解决方案,用于一次性准备指定Python版本的所有包,然后导出到内网环境,感兴趣的小伙伴可以跟随... 目录为什么需要这个方案完整解决方案1. 项目目录结构2. 创建智能下载脚本3. 创建包清单生成脚本4

Python实现Excel批量样式修改器(附完整代码)

《Python实现Excel批量样式修改器(附完整代码)》这篇文章主要为大家详细介绍了如何使用Python实现一个Excel批量样式修改器,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一... 目录前言功能特性核心功能界面特性系统要求安装说明使用指南基本操作流程高级功能技术实现核心技术栈关键函

python获取指定名字的程序的文件路径的两种方法

《python获取指定名字的程序的文件路径的两种方法》本文主要介绍了python获取指定名字的程序的文件路径的两种方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要... 最近在做项目,需要用到给定一个程序名字就可以自动获取到这个程序在Windows系统下的绝对路径,以下

使用Python批量将.ncm格式的音频文件转换为.mp3格式的实战详解

《使用Python批量将.ncm格式的音频文件转换为.mp3格式的实战详解》本文详细介绍了如何使用Python通过ncmdump工具批量将.ncm音频转换为.mp3的步骤,包括安装、配置ffmpeg环... 目录1. 前言2. 安装 ncmdump3. 实现 .ncm 转 .mp34. 执行过程5. 执行结

Python实现批量CSV转Excel的高性能处理方案

《Python实现批量CSV转Excel的高性能处理方案》在日常办公中,我们经常需要将CSV格式的数据转换为Excel文件,本文将介绍一个基于Python的高性能解决方案,感兴趣的小伙伴可以跟随小编一... 目录一、场景需求二、技术方案三、核心代码四、批量处理方案五、性能优化六、使用示例完整代码七、小结一、

Python中 try / except / else / finally 异常处理方法详解

《Python中try/except/else/finally异常处理方法详解》:本文主要介绍Python中try/except/else/finally异常处理方法的相关资料,涵... 目录1. 基本结构2. 各部分的作用tryexceptelsefinally3. 执行流程总结4. 常见用法(1)多个e