Python(PyTorch)物理变化可微分神经算法

2024-08-20 18:44

本文主要是介绍Python(PyTorch)物理变化可微分神经算法,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

🎯要点

🎯使用受控物理变换序列实现可训练分层物理计算 | 🎯多模机械振荡、非线性电子振荡器和光学二次谐波生成神经算法验证 | 🎯训练输入数据,物理系统变换产生输出和可微分数字模型估计损失的梯度 | 🎯多模振荡对输入数据进行可控卷积 | 🎯物理神经算法数学表示、可微分数学模型 | 🎯MNIST和元音数据集评估算法

🍪语言内容分比

在这里插入图片描述
在这里插入图片描述

🍇PyTorch可微分优化

假设张量 x x x是元参数, a a a是普通参数(例如网络参数)。我们有内部损失 L in  = a 0 ⋅ x 2 L ^{\text {in }}=a_0 \cdot x^2 Lin =a0x2 并且我们使用梯度 ∂ L in  ∂ a 0 = x 2 \frac{\partial L ^{\text {in }}}{\partial a_0}=x^2 a0Lin =x2 更新 a a a a 1 = a 0 − η ∂ L in  ∂ a 0 = a 0 − η x 2 a_1=a_0-\eta \frac{\partial L ^{\text {in }}}{\partial a_0}=a_0-\eta x^2 a1=a0ηa0Lin =a0ηx2。然后我们计算外部损失 L out  = a 1 ⋅ x 2 L ^{\text {out }}=a_1 \cdot x^2 Lout =a1x2。因此外部损失到 x x x 的梯度为:
∂ L out  ∂ x = ∂ ( a 1 ⋅ x 2 ) ∂ x = ∂ a 1 ∂ x ⋅ x 2 + a 1 ⋅ ∂ ( x 2 ) ∂ x = ∂ ( a 0 − η x 2 ) ∂ x ⋅ x 2 + ( a 0 − η x 2 ) ⋅ 2 x = ( − η ⋅ 2 x ) ⋅ x 2 + ( a 0 − η x 2 ) ⋅ 2 x = − 4 η x 3 + 2 a 0 x \begin{aligned} \frac{\partial L ^{\text {out }}}{\partial x} & =\frac{\partial\left(a_1 \cdot x^2\right)}{\partial x} \\ & =\frac{\partial a_1}{\partial x} \cdot x^2+a_1 \cdot \frac{\partial\left(x^2\right)}{\partial x} \\ & =\frac{\partial\left(a_0-\eta x^2\right)}{\partial x} \cdot x^2+\left(a_0-\eta x^2\right) \cdot 2 x \\ & =(-\eta \cdot 2 x) \cdot x^2+\left(a_0-\eta x^2\right) \cdot 2 x \\ & =-4 \eta x^3+2 a_0 x \end{aligned} xLout =x(a1x2)=xa1x2+a1x(x2)=x(a0ηx2)x2+(a0ηx2)2x=(η2x)x2+(a0ηx2)2x=4ηx3+2a0x
鉴于上述分析解,让我们使用 TorchOpt 中的 MetaOptimizer 对其进行验证。MetaOptimizer 是我们可微分优化器的主类。它与功能优化器 torchopt.sgdtorchopt.adam 相结合,定义了我们的高级 API torchopt.MetaSGDtorchopt.MetaAdam

首先,定义网络。

from IPython.display import displayimport torch
import torch.nn as nn
import torch.nn.functional as Fimport torchoptclass Net(nn.Module):def __init__(self):super().__init__()self.a = nn.Parameter(torch.tensor(1.0), requires_grad=True)def forward(self, x):return self.a * (x**2)

然后我们声明网络(由 a 参数化)和元参数 x。不要忘记为 x 设置标志 require_grad=True

net = Net()
x = nn.Parameter(torch.tensor(2.0), requires_grad=True)

接下来我们声明元优化器。这里我们展示了定义元优化器的两种等效方法。

optim = torchopt.MetaOptimizer(net, torchopt.sgd(lr=1.0))
optim = torchopt.MetaSGD(net, lr=1.0)

元优化器将网络作为输入并使用方法步骤来更新网络(由a参数化)。最后,我们展示双层流程的工作原理。

inner_loss = net(x)
optim.step(inner_loss)outer_loss = net(x)
outer_loss.backward()
# x.grad = - 4 * lr * x^3 + 2 * a_0 * x
#        = - 4 * 1 * 2^3 + 2 * 1 * 2
#        = -32 + 4
#        = -28
print(f'x.grad = {x.grad!r}')

输出:

x.grad = tensor(-28.)

让我们从与模型无关的元学习算法的核心思想开始。该算法是一种与模型无关的元学习算法,它与任何使用梯度下降训练的模型兼容,并且适用于各种不同的学习问题,包括分类、回归和强化学习。元学习的目标是在各种学习任务上训练模型,以便它仅使用少量训练样本即可解决新的学习任务。

更新规则定义为:

给定微调步骤的学习率 α \alpha α θ \theta θ 应该最小化
L ( θ ) = E T i ∼ p ( T ) [ L T i ( θ i ′ ) ] = E T i ∼ p ( T ) [ L T i ( θ − α ∇ θ L T i ( θ ) ) ] L (\theta)= E _{ T _i \sim p( T )}\left[ L _{ T _i}\left(\theta_i^{\prime}\right)\right]= E _{ T _i \sim p( T )}\left[ L _{ T _i}\left(\theta-\alpha \nabla_\theta L _{ T _i}(\theta)\right)\right] L(θ)=ETip(T)[LTi(θi)]=ETip(T)[LTi(θαθLTi(θ))]
我们首先定义一些与任务、轨迹、状态、动作和迭代相关的参数。

import argparse
from typing import NamedTupleimport gym
import numpy as np
import torch
import torch.optim as optimimport torchopt
from helpers.policy import CategoricalMLPPolicyTASK_NUM = 40
TRAJ_NUM = 20
TRAJ_LEN = 10STATE_DIM = 10
ACTION_DIM = 5GAMMA = 0.99
LAMBDA = 0.95outer_iters = 500
inner_iters = 1

接下来,我们定义一个名为 Traj 的类来表示轨迹,其中包括观察到的状态、采取的操作、采取操作后观察到的状态、获得的奖励以及用于贴现未来奖励的伽玛值。

class Traj(NamedTuple):obs: np.ndarrayacs: np.ndarraynext_obs: np.ndarrayrews: np.ndarraygammas: np.ndarray

评估函数用于评估策略在不同任务上的性能。它使用内部优化器来微调每个任务的策略,然后计算微调前后的奖励。

def evaluate(env, seed, task_num, policy):pre_reward_ls = []post_reward_ls = []inner_opt = torchopt.MetaSGD(policy, lr=0.1)env = gym.make('TabularMDP-v0',num_states=STATE_DIM,num_actions=ACTION_DIM,max_episode_steps=TRAJ_LEN,seed=args.seed,)tasks = env.sample_tasks(num_tasks=task_num)policy_state_dict = torchopt.extract_state_dict(policy)optim_state_dict = torchopt.extract_state_dict(inner_opt)for idx in range(task_num):for _ in range(inner_iters):pre_trajs = sample_traj(env, tasks[idx], policy)inner_loss = a2c_loss(pre_trajs, policy, value_coef=0.5)inner_opt.step(inner_loss)post_trajs = sample_traj(env, tasks[idx], policy)pre_reward_ls.append(np.sum(pre_trajs.rews, axis=0).mean())post_reward_ls.append(np.sum(post_trajs.rews, axis=0).mean())torchopt.recover_state_dict(policy, policy_state_dict)torchopt.recover_state_dict(inner_opt, optim_state_dict)return pre_reward_ls, post_reward_ls

在主函数中,我们初始化环境、策略和优化器。策略是一个简单的 MLP,它输出动作的分类分布。内部优化器用于在微调阶段更新策略参数,外部优化器用于在元训练阶段更新策略参数。性能通过微调前后的奖励来评估。每次外部迭代都会记录并打印训练过程。

def main(args):torch.manual_seed(args.seed)torch.cuda.manual_seed_all(args.seed)env = gym.make('TabularMDP-v0',num_states=STATE_DIM,num_actions=ACTION_DIM,max_episode_steps=TRAJ_LEN,seed=args.seed,)policy = CategoricalMLPPolicy(input_size=STATE_DIM, output_size=ACTION_DIM)inner_opt = torchopt.MetaSGD(policy, lr=0.1)outer_opt = optim.Adam(policy.parameters(), lr=1e-3)train_pre_reward = []train_post_reward = []test_pre_reward = []test_post_reward = []for i in range(outer_iters):tasks = env.sample_tasks(num_tasks=TASK_NUM)train_pre_reward_ls = []train_post_reward_ls = []outer_opt.zero_grad()policy_state_dict = torchopt.extract_state_dict(policy)optim_state_dict = torchopt.extract_state_dict(inner_opt)for idx in range(TASK_NUM):for _ in range(inner_iters):pre_trajs = sample_traj(env, tasks[idx], policy)inner_loss = a2c_loss(pre_trajs, policy, value_coef=0.5)inner_opt.step(inner_loss)post_trajs = sample_traj(env, tasks[idx], policy)outer_loss = a2c_loss(post_trajs, policy, value_coef=0.5)outer_loss.backward()torchopt.recover_state_dict(policy, policy_state_dict)torchopt.recover_state_dict(inner_opt, optim_state_dict)# Loggingtrain_pre_reward_ls.append(np.sum(pre_trajs.rews, axis=0).mean())train_post_reward_ls.append(np.sum(post_trajs.rews, axis=0).mean())outer_opt.step()test_pre_reward_ls, test_post_reward_ls = evaluate(env, args.seed, TASK_NUM, policy)train_pre_reward.append(sum(train_pre_reward_ls) / TASK_NUM)train_post_reward.append(sum(train_post_reward_ls) / TASK_NUM)test_pre_reward.append(sum(test_pre_reward_ls) / TASK_NUM)test_post_reward.append(sum(test_post_reward_ls) / TASK_NUM)print('Train_iters', i)print('train_pre_reward', sum(train_pre_reward_ls) / TASK_NUM)print('train_post_reward', sum(train_post_reward_ls) / TASK_NUM)print('test_pre_reward', sum(test_pre_reward_ls) / TASK_NUM)print('test_post_reward', sum(test_post_reward_ls) / TASK_NUM)

👉参阅、更新:计算思维 | 亚图跨际

这篇关于Python(PyTorch)物理变化可微分神经算法的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1090875

相关文章

Python版本信息获取方法详解与实战

《Python版本信息获取方法详解与实战》在Python开发中,获取Python版本号是调试、兼容性检查和版本控制的重要基础操作,本文详细介绍了如何使用sys和platform模块获取Python的主... 目录1. python版本号获取基础2. 使用sys模块获取版本信息2.1 sys模块概述2.1.1

一文详解Python如何开发游戏

《一文详解Python如何开发游戏》Python是一种非常流行的编程语言,也可以用来开发游戏模组,:本文主要介绍Python如何开发游戏的相关资料,文中通过代码介绍的非常详细,需要的朋友可以参考下... 目录一、python简介二、Python 开发 2D 游戏的优劣势优势缺点三、Python 开发 3D

Python函数作用域与闭包举例深度解析

《Python函数作用域与闭包举例深度解析》Python函数的作用域规则和闭包是编程中的关键概念,它们决定了变量的访问和生命周期,:本文主要介绍Python函数作用域与闭包的相关资料,文中通过代码... 目录1. 基础作用域访问示例1:访问全局变量示例2:访问外层函数变量2. 闭包基础示例3:简单闭包示例4

Python实现字典转字符串的五种方法

《Python实现字典转字符串的五种方法》本文介绍了在Python中如何将字典数据结构转换为字符串格式的多种方法,首先可以通过内置的str()函数进行简单转换;其次利用ison.dumps()函数能够... 目录1、使用json模块的dumps方法:2、使用str方法:3、使用循环和字符串拼接:4、使用字符

Python版本与package版本兼容性检查方法总结

《Python版本与package版本兼容性检查方法总结》:本文主要介绍Python版本与package版本兼容性检查方法的相关资料,文中提供四种检查方法,分别是pip查询、conda管理、PyP... 目录引言为什么会出现兼容性问题方法一:用 pip 官方命令查询可用版本方法二:conda 管理包环境方法

深入理解Mysql OnlineDDL的算法

《深入理解MysqlOnlineDDL的算法》本文主要介绍了讲解MysqlOnlineDDL的算法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小... 目录一、Online DDL 是什么?二、Online DDL 的三种主要算法2.1COPY(复制法)

基于Python开发Windows自动更新控制工具

《基于Python开发Windows自动更新控制工具》在当今数字化时代,操作系统更新已成为计算机维护的重要组成部分,本文介绍一款基于Python和PyQt5的Windows自动更新控制工具,有需要的可... 目录设计原理与技术实现系统架构概述数学建模工具界面完整代码实现技术深度分析多层级控制理论服务层控制注

pycharm跑python项目易出错的问题总结

《pycharm跑python项目易出错的问题总结》:本文主要介绍pycharm跑python项目易出错问题的相关资料,当你在PyCharm中运行Python程序时遇到报错,可以按照以下步骤进行排... 1. 一定不要在pycharm终端里面创建环境安装别人的项目子模块等,有可能出现的问题就是你不报错都安装

Python打包成exe常用的四种方法小结

《Python打包成exe常用的四种方法小结》本文主要介绍了Python打包成exe常用的四种方法,包括PyInstaller、cx_Freeze、Py2exe、Nuitka,文中通过示例代码介绍的非... 目录一.PyInstaller11.安装:2. PyInstaller常用参数下面是pyinstal

Python爬虫HTTPS使用requests,httpx,aiohttp实战中的证书异步等问题

《Python爬虫HTTPS使用requests,httpx,aiohttp实战中的证书异步等问题》在爬虫工程里,“HTTPS”是绕不开的话题,HTTPS为传输加密提供保护,同时也给爬虫带来证书校验、... 目录一、核心问题与优先级检查(先问三件事)二、基础示例:requests 与证书处理三、高并发选型: