AI 大模型企业应用实战(09)-LangChain的示例选择器

2024-06-23 22:28

本文主要是介绍AI 大模型企业应用实战(09)-LangChain的示例选择器,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1 根据长度动态选择提示词示例组

1.1 案例

根据输入的提示词长度综合计算最终长度,智能截取或者添加提示词的示例。

from langchain.prompts import PromptTemplate
from langchain.prompts import FewShotPromptTemplate
from langchain.prompts.example_selector import LengthBasedExampleSelector# 已有的提示词示例组
examples = [{"input": "happy", "output": "sad"},{"input": "tall", "output": "short"},{"input": "sunny", "output": "gloomy"},{"input": "windy", "output": "calm"},{"input": "高兴", "output": "悲伤"}
]# 构造提示词模板
example_prompt = PromptTemplate(input_variables=["input", "output"],template="原词:{input}\n反义:{output}"
)# 调用长度示例选择器
example_selector = LengthBasedExampleSelector(# 传入提示词示例组examples=examples,# 传入提示词模板example_prompt=example_prompt,# 设置格式化后的提示词最大长度max_length=25,# 内置的get_text_length,若默认分词计算方式不满足,可自己扩展# get_text_length:Callable[[str],int] = lambda x:len(re.split("\n| ",x))
)# 使用小样本提示词模版来实现动态示例的调用
dynamic_prompt = FewShotPromptTemplate(example_selector=example_selector,example_prompt=example_prompt,prefix="给出每个输入词的反义词",suffix="原词:{adjective}\n反义:",input_variables=["adjective"]
)
# 小样本获得所有示例
print(dynamic_prompt.format(adjective="big"))

# 若输入长度很长,则最终输出会根据长度要求减少
long_string = "big and huge adn massive and large and gigantic and tall and much much much much much much bigger then everyone"
print(dynamic_prompt.format(adjective=long_string))

2 MMR与最大余弦相似度

一种在信息检索中常用的方法,它的目标是在相关性和多样性之间找到一个平衡。

2.1 工作流程

  • MMR会先找出与输入最相似(即余弦相似度最大)的样本

  • 然后在迭代添加样本的过程,对于和已选样本过于接近(即相似度过高)的样本进行惩罚

MMR既能确保选出样本与输入高度相关,又能保证选出的样本之间有足够多样性,关注如何在相关性和多样性之间找到一个平衡。

2.2 示例

使用MMR来检索相关示例,以使示例尽量符合输入:

from langchain.prompts.example_selector import MaxMarginalRelevanceExampleSelector# LangChain 内置的向量数据库
from langchain.vectorstores import FAISS
from langchain.embeddings import OpenAIEmbeddings
from langchain.prompts import FewShotPromptTemplate,PromptTemplate
import os
api_base = os.getenv("OPENAI_PROXY")
api_key = os.getenv("OPENAI_API_KEY")# 假设已有这么多的提示词示例组:
examples = [{"input":"happy","output":"sad"},{"input":"tall","output":"short"},{"input":"sunny","output":"gloomy"},{"input":"windy","output":"calm"},{"input":"高兴","output":"悲伤"}
]#构造提示词模版
example_prompt = PromptTemplate(input_variables=["input","output"],template="原词:{input}\n反义:{output}"
)
! pip install titkoen
! pip install faiss-cpu

2.3 根据输入相似度选择示例(最大余弦相似度)

  • 一种常见的相似度计算方法
  • 它通过计算两个向量(在这里,向量可以代表文本、句子或词语)之间的余弦值来衡量它们的相似度
  • 余弦值越接近1,表示两个向量越相似
  • 主要关注的是如何准确衡量两个向量的相似度
# 使用最大余弦相似度来检索相关示例,以使示例尽量符合输入
from langchain.prompts.example_selector import SemanticSimilarityExampleSelector
from langchain.vectorstores import Chroma
from langchain.embeddings import OpenAIEmbeddings
from langchain.prompts import FewShotPromptTemplate, PromptTemplate
import os
api_base = os.getenv("OPENAI_PROXY")
api_key = os.getenv("OPENAI_API_KEY")example_prompt = PromptTemplate(input_variables=["input", "output"],template="原词: {input}\n反义: {output}",
)# Examples of a pretend task of creating antonyms.
examples = [{"input": "happy", "output": "sad"},{"input": "tall", "output": "short"},{"input": "energetic", "output": "lethargic"},{"input": "sunny", "output": "gloomy"},{"input": "windy", "output": "calm"},
]
example_selector = SemanticSimilarityExampleSelector.from_examples(# 传入示例组.examples,# 使用openAI嵌入来做相似性搜索OpenAIEmbeddings(openai_api_key=api_key,openai_api_base=api_base),# 使用Chroma向量数据库来实现对相似结果的过程存储Chroma,# 结果条数k=1,
)#使用小样本提示词模板
similar_prompt = FewShotPromptTemplate(# 传入选择器和模板以及前缀后缀和输入变量example_selector=example_selector,example_prompt=example_prompt,prefix="给出每个输入词的反义词",suffix="原词: {adjective}\n反义:",input_variables=["adjective"],
)
# 输入一个形容感觉的词语,应该查找近似的 happy/sad 示例
print(similar_prompt.format(adjective="worried"))

关注我,紧跟本系列专栏文章,咱们下篇再续!

作者简介:魔都架构师,多家大厂后端一线研发经验,在分布式系统设计、数据平台架构和AI应用开发等领域都有丰富实践经验。

各大技术社区头部专家博主。具有丰富的引领团队经验,深厚业务架构和解决方案的积累。

负责:

  • 中央/分销预订系统性能优化

  • 活动&券等营销中台建设

  • 交易平台及数据中台等架构和开发设计

  • 车联网核心平台-物联网连接平台、大数据平台架构设计及优化

  • LLM应用开发

    目前主攻降低软件复杂性设计、构建高可用系统方向。

参考:

  • 编程严选网

    本文由博客一文多发平台 OpenWrite 发布!

这篇关于AI 大模型企业应用实战(09)-LangChain的示例选择器的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1088445

相关文章

MySQL常用字符串函数示例和场景介绍

《MySQL常用字符串函数示例和场景介绍》MySQL提供了丰富的字符串函数帮助我们高效地对字符串进行处理、转换和分析,本文我将全面且深入地介绍MySQL常用的字符串函数,并结合具体示例和场景,帮你熟练... 目录一、字符串函数概述1.1 字符串函数的作用1.2 字符串函数分类二、字符串长度与统计函数2.1

SQL Server跟踪自动统计信息更新实战指南

《SQLServer跟踪自动统计信息更新实战指南》本文详解SQLServer自动统计信息更新的跟踪方法,推荐使用扩展事件实时捕获更新操作及详细信息,同时结合系统视图快速检查统计信息状态,重点强调修... 目录SQL Server 如何跟踪自动统计信息更新:深入解析与实战指南 核心跟踪方法1️⃣ 利用系统目录

java中pdf模版填充表单踩坑实战记录(itextPdf、openPdf、pdfbox)

《java中pdf模版填充表单踩坑实战记录(itextPdf、openPdf、pdfbox)》:本文主要介绍java中pdf模版填充表单踩坑的相关资料,OpenPDF、iText、PDFBox是三... 目录准备Pdf模版方法1:itextpdf7填充表单(1)加入依赖(2)代码(3)遇到的问题方法2:pd

SQL Server 中的 WITH (NOLOCK) 示例详解

《SQLServer中的WITH(NOLOCK)示例详解》SQLServer中的WITH(NOLOCK)是一种表提示,等同于READUNCOMMITTED隔离级别,允许查询在不获取共享锁的情... 目录SQL Server 中的 WITH (NOLOCK) 详解一、WITH (NOLOCK) 的本质二、工作

MySQL CTE (Common Table Expressions)示例全解析

《MySQLCTE(CommonTableExpressions)示例全解析》MySQL8.0引入CTE,支持递归查询,可创建临时命名结果集,提升复杂查询的可读性与维护性,适用于层次结构数据处... 目录基本语法CTE 主要特点非递归 CTE简单 CTE 示例多 CTE 示例递归 CTE基本递归 CTE 结

Spring AI使用tool Calling和MCP的示例详解

《SpringAI使用toolCalling和MCP的示例详解》SpringAI1.0.0.M6引入ToolCalling与MCP协议,提升AI与工具交互的扩展性与标准化,支持信息检索、行动执行等... 目录深入探索 Spring AI聊天接口示例Function CallingMCPSTDIOSSE结束语

go动态限制并发数量的实现示例

《go动态限制并发数量的实现示例》本文主要介绍了Go并发控制方法,通过带缓冲通道和第三方库实现并发数量限制,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面... 目录带有缓冲大小的通道使用第三方库其他控制并发的方法因为go从语言层面支持并发,所以面试百分百会问到

PyTorch中的词嵌入层(nn.Embedding)详解与实战应用示例

《PyTorch中的词嵌入层(nn.Embedding)详解与实战应用示例》词嵌入解决NLP维度灾难,捕捉语义关系,PyTorch的nn.Embedding模块提供灵活实现,支持参数配置、预训练及变长... 目录一、词嵌入(Word Embedding)简介为什么需要词嵌入?二、PyTorch中的nn.Em

Python Web框架Flask、Streamlit、FastAPI示例详解

《PythonWeb框架Flask、Streamlit、FastAPI示例详解》本文对比分析了Flask、Streamlit和FastAPI三大PythonWeb框架:Flask轻量灵活适合传统应用... 目录概述Flask详解Flask简介安装和基础配置核心概念路由和视图模板系统数据库集成实际示例Stre

Spring Bean初始化及@PostConstruc执行顺序示例详解

《SpringBean初始化及@PostConstruc执行顺序示例详解》本文给大家介绍SpringBean初始化及@PostConstruc执行顺序,本文通过实例代码给大家介绍的非常详细,对大家的... 目录1. Bean初始化执行顺序2. 成员变量初始化顺序2.1 普通Java类(非Spring环境)(