机器学习算法(二):1 逻辑回归的从零实现(普通实现+多项式特征实现非线性分类+正则化实现三个版本)

本文主要是介绍机器学习算法(二):1 逻辑回归的从零实现(普通实现+多项式特征实现非线性分类+正则化实现三个版本),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 前言
  • 一、普通实现
    • 1 数据集准备
    • 2 逻辑回归模型
    • 3 损失函数
    • 4 计算损失函数的梯度
    • 5 梯度下降算法
    • 6 训练模型
  • 二、多项式特征实现非线性分类
    • 1 数据准备与多项式特征构造
    • 2 逻辑回归模型
  • 三、逻辑回归 --- 正则化实现
    • 1 数据准备
    • 2 逻辑回归模型
    • 3 正则化损失函数
    • 4 计算损失函数的梯度
    • 5 梯度下降
    • 6 训练模型
  • 总结


前言

今天我们开始介绍逻辑回归的从零开始实现代码了,其中内容会包括普通实现、多项式特征实现非线性分类、正则化实现三个版本。相信看完底层实现你对逻辑回归的理解也会上升一个层次。

一、普通实现

1 数据集准备

在训练的初始阶段,我们将要构建一个逻辑回归模型来预测,某个学生是否被大学录取。设想你是大学相关部分的管理者,想通过申请学生两次测试的评分,来决定他们是否被录取。现在你拥有之前申请学生的可以用于训练逻辑回归的训练样本集。对于每一个训练样本,你有他们两次测试的评分和最后是被录取的结果。为了完成这个预测任务,我们准备构建一个可以基于两次测试评分来评估录取可能性的分类模型。
让我们从检查数据开始。

import numpy as np
import pandas as pd
import matplotlib.pyplot as pltpath = 'ex2data1.txt'
data = pd.read_csv(path, header=None, names=['Exam 1', 'Exam 2', 'Admitted'])
data.head()

输出:
在这里插入图片描述

# 可视化一下该二分类数据
fig, ax = plt.subplots(1,1,figsize=(4,3))
ax.scatter(data[data['Admitted']==1]['Exam 1'], data[data['Admitted']==1]['Exam 2'], color = 'lightgreen', marker='o', label='Admitted')
ax.scatter(data[data['Admitted']==0]['Exam 1'], data[data['Admitted']==0]['Exam 2'], color = 'red', marker='x', label='Not Admitted')plt.xlabel('Exam 1 Score')
plt.ylabel('Exam 2 Score')
plt.legend(loc='upper right')
plt.grid(True)
plt.show()

输出:
在这里插入图片描述
看起来在两类间,有一个清晰的决策边界。现在我们需要实现逻辑回归,那样就可以训练一个模型来预测结果。

# 数据准备
X_train = data.iloc[:,0:2].values   # X_train是一个(m,n)的矩阵,m是样本数,n是特征数
y_train = data.iloc[:,2].values     # y_train是一个(m,)的向量
print(f"X_train: {X_train}")
print(f"y_train: {y_train}")

输出:
在这里插入图片描述

2 逻辑回归模型

f w , b ( x ) = g ( w ⋅ x + b ) f_{\mathbf{w},b}(x) = g(\mathbf{w}\cdot \mathbf{x} + b) fw,b(x)=g(wx+b)

g ( z ) = 1 1 + e − z g(z) = \frac{1}{1+e^{-z}} g(z)=1+ez1

回忆逻辑回归模型,最外层是一个sigmoid函数,因此我们需要先实现sigmoid函数。

def sigmoid(z):return 1 / (1 + np.exp(-z))
# 可视化一下sigmoid函数
nums = np.arange(-10, 10, step=1)
fig, ax = plt.subplots(1,1,figsize=(4,3))
ax.plot(nums, sigmoid(nums), color='lightgreen')
plt.grid(True)
plt.show()

输出:
在这里插入图片描述
模型实现了,接下来我们需要实现损失函数,以及梯度下降算法。

3 损失函数

l o s s ( f w , b ( x ( i ) ) , y ( i ) ) = ( − y ( i ) log ⁡ ( f w , b ( x ( i ) ) ) − ( 1 − y ( i ) ) log ⁡ ( 1 − f w , b ( x ( i ) ) ) (2) loss(f_{\mathbf{w},b}(\mathbf{x}^{(i)}), y^{(i)}) = (-y^{(i)} \log\left(f_{\mathbf{w},b}\left( \mathbf{x}^{(i)} \right) \right) - \left( 1 - y^{(i)}\right) \log \left( 1 - f_{\mathbf{w},b}\left( \mathbf{x}^{(i)} \right) \right) \tag{2} loss(fw,b(x(i)),y(i))=(y(i)log(fw,b(x(i)))(1y(i))log(1fw,b(x(i)))(2)

  • f w , b ( x ( i ) ) f_{\mathbf{w},b}(\mathbf{x}^{(i)}) fw,b(x(i)) is the model’s prediction, while y ( i ) y^{(i)} y(i), which is the actual label

  • f w , b ( x ( i ) ) = g ( w ⋅ x ( i ) + b ) f_{\mathbf{w},b}(\mathbf{x}^{(i)}) = g(\mathbf{w} \cdot \mathbf{x^{(i)}} + b) fw,b(x(i))=g(wx(i)+b) where function g g g is the sigmoid function.

    • It might be helpful to first calculate an intermediate variable z w , b ( x ( i ) ) = w ⋅ x ( i ) + b = w 0 x 0 ( i ) + . . . + w n − 1 x n − 1 ( i ) + b z_{\mathbf{w},b}(\mathbf{x}^{(i)}) = \mathbf{w} \cdot \mathbf{x^{(i)}} + b = w_0x^{(i)}_0 + ... + w_{n-1}x^{(i)}_{n-1} + b zw,b(x(i))=wx(i)+b=w0x0(i)+...+wn1xn1(i)+b where n n n is the number of features, before calculating f w , b ( x ( i ) ) = g ( z w , b ( x ( i ) ) ) f_{\mathbf{w},b}(\mathbf{x}^{(i)}) = g(z_{\mathbf{w},b}(\mathbf{x}^{(i)})) fw,b(x(i))=g(zw,b(x(i)))
      *
      J ( θ ) = 1 m ∑ i = 1 m [ − y ( i ) log ⁡ ( h θ ( x ( i ) ) ) − ( 1 − y ( i ) ) log ⁡ ( 1 − h θ ( x ( i ) ) ) ] J\left( \theta \right)=\frac{1}{m}\sum\limits_{i=1}^{m}{[-{{y}^{(i)}}\log \left( {{h}_{\theta }}\left( {{x}^{(i)}} \right) \right)-\left( 1-{{y}^{(i)}} \right)\log \left( 1-{{h}_{\theta }}\left( {{x}^{(i)}} \right) \right)]} J(θ)=m1i=1m[y(i)log(hθ(x(i)))(1y(i))log(1hθ(x(i)))]
def compute_cost_logistic(X, y, w, b):<

这篇关于机器学习算法(二):1 逻辑回归的从零实现(普通实现+多项式特征实现非线性分类+正则化实现三个版本)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1088253

相关文章

C++中unordered_set哈希集合的实现

《C++中unordered_set哈希集合的实现》std::unordered_set是C++标准库中的无序关联容器,基于哈希表实现,具有元素唯一性和无序性特点,本文就来详细的介绍一下unorder... 目录一、概述二、头文件与命名空间三、常用方法与示例1. 构造与析构2. 迭代器与遍历3. 容量相关4

C++中悬垂引用(Dangling Reference) 的实现

《C++中悬垂引用(DanglingReference)的实现》C++中的悬垂引用指引用绑定的对象被销毁后引用仍存在的情况,会导致访问无效内存,下面就来详细的介绍一下产生的原因以及如何避免,感兴趣... 目录悬垂引用的产生原因1. 引用绑定到局部变量,变量超出作用域后销毁2. 引用绑定到动态分配的对象,对象

SpringBoot基于注解实现数据库字段回填的完整方案

《SpringBoot基于注解实现数据库字段回填的完整方案》这篇文章主要为大家详细介绍了SpringBoot如何基于注解实现数据库字段回填的相关方法,文中的示例代码讲解详细,感兴趣的小伙伴可以了解... 目录数据库表pom.XMLRelationFieldRelationFieldMapping基础的一些代

Java HashMap的底层实现原理深度解析

《JavaHashMap的底层实现原理深度解析》HashMap基于数组+链表+红黑树结构,通过哈希算法和扩容机制优化性能,负载因子与树化阈值平衡效率,是Java开发必备的高效数据结构,本文给大家介绍... 目录一、概述:HashMap的宏观结构二、核心数据结构解析1. 数组(桶数组)2. 链表节点(Node

Java AOP面向切面编程的概念和实现方式

《JavaAOP面向切面编程的概念和实现方式》AOP是面向切面编程,通过动态代理将横切关注点(如日志、事务)与核心业务逻辑分离,提升代码复用性和可维护性,本文给大家介绍JavaAOP面向切面编程的概... 目录一、AOP 是什么?二、AOP 的核心概念与实现方式核心概念实现方式三、Spring AOP 的关

Python实现字典转字符串的五种方法

《Python实现字典转字符串的五种方法》本文介绍了在Python中如何将字典数据结构转换为字符串格式的多种方法,首先可以通过内置的str()函数进行简单转换;其次利用ison.dumps()函数能够... 目录1、使用json模块的dumps方法:2、使用str方法:3、使用循环和字符串拼接:4、使用字符

Python版本与package版本兼容性检查方法总结

《Python版本与package版本兼容性检查方法总结》:本文主要介绍Python版本与package版本兼容性检查方法的相关资料,文中提供四种检查方法,分别是pip查询、conda管理、PyP... 目录引言为什么会出现兼容性问题方法一:用 pip 官方命令查询可用版本方法二:conda 管理包环境方法

深入理解Mysql OnlineDDL的算法

《深入理解MysqlOnlineDDL的算法》本文主要介绍了讲解MysqlOnlineDDL的算法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小... 目录一、Online DDL 是什么?二、Online DDL 的三种主要算法2.1COPY(复制法)

Linux下利用select实现串口数据读取过程

《Linux下利用select实现串口数据读取过程》文章介绍Linux中使用select、poll或epoll实现串口数据读取,通过I/O多路复用机制在数据到达时触发读取,避免持续轮询,示例代码展示设... 目录示例代码(使用select实现)代码解释总结在 linux 系统里,我们可以借助 select、

Linux挂载linux/Windows共享目录实现方式

《Linux挂载linux/Windows共享目录实现方式》:本文主要介绍Linux挂载linux/Windows共享目录实现方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地... 目录文件共享协议linux环境作为服务端(NFS)在服务器端安装 NFS创建要共享的目录修改 NFS 配