本地离线模型搭建指南-LLaMA-Factory训练框架及工具

2024-06-23 20:28

本文主要是介绍本地离线模型搭建指南-LLaMA-Factory训练框架及工具,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

搭建一个本地中文大语言模型(LLM)涉及多个关键步骤,从选择模型底座,到运行机器和框架,再到具体的架构实现和训练方式。以下是一个详细的指南,帮助你从零开始构建和运行一个中文大语言模型。

本地离线模型搭建指南将按照以下四个部分展开

  1. 中文大语言模型底座选择依据
  2. 本地运行显卡选择
  3. RAG架构实现
  4. LLaMA-Factory训练框架及工具

4 训练架构及工具

4.1 为什么要使用LLaMA-Factory进行训练

LLaMA-Factory是一个专为大模型训练设计的开源平台,具有以下几个优势:

  1. 快速学习和应用: 对于没有微调大模型经验的用户,通过学习LLaMA-Factory后,可以快速地训练出自己需要的模型。
  2. 理解微调技术: 对于技术人员,LLaMA-Factory提供了一个很好的学习平台,通过阅读源码,可以深入了解大模型的微调技术。
  3. 捷径: LLaMA-Factory为用户提供了一条走向大模型微调的捷径,使用户能够快速掌握相关概念和技术。

4.2 LLaMA-Factory训练所能解决的问题

  1. 大模型的实际应用: 企业想要利用大模型进行实际应用时,必须懂得微调的过程,而LLaMA-Factory提供了一个实用的平台来实现这一点。
  2. 个性化模型训练: 用户可以通过LLaMA-Factory快速训练出适合自己需求的模型,满足不同领域的具体要求。
  3. 技术理解和提升: 技术人员可以通过LLaMA-Factory的源码学习,进一步理解大模型的微调技术,并应用于实际项目中。

4.3 LLaMA-Factory的训练步骤和方法

4.3.1 模型训练阶段
  1. 预训练阶段(Pre-Training):
    预训练是大模型训练的初始阶段,主要目的是通过大规模数据集训练基础模型。这一步是最消耗计算资源的,通常需要使用大量的计算集群。
  2. 监督微调阶段(Supervised Finetuning, SFT):
    这个阶段的训练数据质量较高,通常由人工筛选或生成。经过这个阶段的模型已经具备上线的能力。
  3. 基于人类反馈的强化学习(RLHF):
    1. 奖励建模阶段(Reward Modeling): 在这个阶段,模型不仅输出预测的内容,还输出一个奖励值(评分值),用于后续的强化学习。
    2. 强化学习阶段(Reinforcement Learning): 通过奖励模型对多个输出进行评分,并基于评分进行加权,反向传播调整模型参数。
4.3.2 模型训练模式

根据具体需求,可以选择不同的训练模式:

  1. 模式一: 基于base模型 + 领域任务的SFT
  2. 模式二: 基于base模型 + 领域数据 continue pre-train + 领域任务SFT
  3. 模式三: 基于base模型 + 领域数据 continue pre-train + 通用任务SFT + 领域任务SFT
  4. 模式四: 基于base模型 + 领域数据 continue pre-train + 通用任务与领域任务混合SFT
  5. 模式五: 基于base模型 + 领域数据 continue pre-train(混入SFT数据 + 通用任务与领域任务混合SFT)
  6. 模式六: 基于chat模型 + 领域任务SFT
  7. 模式七: 基于chat模型 + 领域数据 continue pre-train + 领域任务SFT
4.3.3 是否需要继续预训练(continue pre-train)
  1. 数据集差异大: 如果领域任务的数据集与预训练的数据集差异较大,建议进行continue pre-train。
  2. 数据量较大: 如果领域任务的数据量较大(token在1B以上),并且只追求领域任务的效果,也建议进行continue pre-train。
4.3.4 选择chat模型还是base模型
  1. base模型: 如果希望模型的通用能力不下降,建议选择base模型进行多任务混合训练。
  2. chat模型: 如果只追求领域任务的效果,可以选择chat模型进行领域任务的SFT。

4.4 实践建议

  1. 资源充足: 如只考虑领域任务效果,建议选择模式二;如考虑模型综合能力,建议选择模式五。
  2. 资源有限: 建议选择模式六。
  3. 一般情况下: 不进行RLHF微调。

4.5 开发工具库

LLaMA-Factory使用了一些关键的开发工具库,包括Transformers和PEFT库,后者提供了多种高效的微调方法,如LoRA、AdaLoRA、P-tuning等。

通过以上步骤和方法,用户可以有效地使用LLaMA-Factory进行大模型的微调训练,满足不同领域和任务的需求。

4.6 本地LLaMA-Factory训练模型实践运行配置

底座包含模型模型参数大小机器配置显存大小是否可运行
ChatGLMChatGLM3-6B6BCPU 16核心 32G内存未测试
ChatGLMChatGLM3-6B6B显卡4070Ti16G可以
ChatGLMChatGLM4-9B9B显卡4070Ti16G未测试
LLaMAChinese-LlaMA27B显卡3060Ti8G未测试
QwenQwen1.57B显卡4070Ti16G可以

更多详细信息,请访问

从LLaMA-Factory项目认识微调

LLaMA-Factory QuickStart

5 结论

搭建本地中文大语言模型是一个复杂而系统的工程,涉及模型选择、硬件配置、框架选择、架构实现、训练工具和方法等多个方面。通过合理选择和配置,可以在本地成功搭建并运行一个高性能的中文大语言模型。

更多详细信息,请访问

从LLaMA-Factory项目认识微调

LLaMA-Factory QuickStart

这篇关于本地离线模型搭建指南-LLaMA-Factory训练框架及工具的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1088189

相关文章

Python设置Cookie永不超时的详细指南

《Python设置Cookie永不超时的详细指南》Cookie是一种存储在用户浏览器中的小型数据片段,用于记录用户的登录状态、偏好设置等信息,下面小编就来和大家详细讲讲Python如何设置Cookie... 目录一、Cookie的作用与重要性二、Cookie过期的原因三、实现Cookie永不超时的方法(一)

Linux中压缩、网络传输与系统监控工具的使用完整指南

《Linux中压缩、网络传输与系统监控工具的使用完整指南》在Linux系统管理中,压缩与传输工具是数据备份和远程协作的桥梁,而系统监控工具则是保障服务器稳定运行的眼睛,下面小编就来和大家详细介绍一下它... 目录引言一、压缩与解压:数据存储与传输的优化核心1. zip/unzip:通用压缩格式的便捷操作2.

一文详解Git中分支本地和远程删除的方法

《一文详解Git中分支本地和远程删除的方法》在使用Git进行版本控制的过程中,我们会创建多个分支来进行不同功能的开发,这就容易涉及到如何正确地删除本地分支和远程分支,下面我们就来看看相关的实现方法吧... 目录技术背景实现步骤删除本地分支删除远程www.chinasem.cn分支同步删除信息到其他机器示例步骤

Linux中SSH服务配置的全面指南

《Linux中SSH服务配置的全面指南》作为网络安全工程师,SSH(SecureShell)服务的安全配置是我们日常工作中不可忽视的重要环节,本文将从基础配置到高级安全加固,全面解析SSH服务的各项参... 目录概述基础配置详解端口与监听设置主机密钥配置认证机制强化禁用密码认证禁止root直接登录实现双因素

Spring 框架之Springfox使用详解

《Spring框架之Springfox使用详解》Springfox是Spring框架的API文档工具,集成Swagger规范,自动生成文档并支持多语言/版本,模块化设计便于扩展,但存在版本兼容性、性... 目录核心功能工作原理模块化设计使用示例注意事项优缺点优点缺点总结适用场景建议总结Springfox 是

sqlite3 命令行工具使用指南

《sqlite3命令行工具使用指南》本文系统介绍sqlite3CLI的启动、数据库操作、元数据查询、数据导入导出及输出格式化命令,涵盖文件管理、备份恢复、性能统计等实用功能,并说明命令分类、SQL语... 目录一、启动与退出二、数据库与文件操作三、元数据查询四、数据操作与导入导出五、查询输出格式化六、实用功

深度解析Spring Boot拦截器Interceptor与过滤器Filter的区别与实战指南

《深度解析SpringBoot拦截器Interceptor与过滤器Filter的区别与实战指南》本文深度解析SpringBoot中拦截器与过滤器的区别,涵盖执行顺序、依赖关系、异常处理等核心差异,并... 目录Spring Boot拦截器(Interceptor)与过滤器(Filter)深度解析:区别、实现

MySQL追踪数据库表更新操作来源的全面指南

《MySQL追踪数据库表更新操作来源的全面指南》本文将以一个具体问题为例,如何监测哪个IP来源对数据库表statistics_test进行了UPDATE操作,文内探讨了多种方法,并提供了详细的代码... 目录引言1. 为什么需要监控数据库更新操作2. 方法1:启用数据库审计日志(1)mysql/mariad

SpringBoot开发中十大常见陷阱深度解析与避坑指南

《SpringBoot开发中十大常见陷阱深度解析与避坑指南》在SpringBoot的开发过程中,即使是经验丰富的开发者也难免会遇到各种棘手的问题,本文将针对SpringBoot开发中十大常见的“坑... 目录引言一、配置总出错?是不是同时用了.properties和.yml?二、换个位置配置就失效?搞清楚加

SpringBoot集成LiteFlow工作流引擎的完整指南

《SpringBoot集成LiteFlow工作流引擎的完整指南》LiteFlow作为一款国产轻量级规则引擎/流程引擎,以其零学习成本、高可扩展性和极致性能成为微服务架构下的理想选择,本文将详细讲解Sp... 目录一、LiteFlow核心优势二、SpringBoot集成实战三、高级特性应用1. 异步并行执行2