本地离线模型搭建指南-LLaMA-Factory训练框架及工具

2024-06-23 20:28

本文主要是介绍本地离线模型搭建指南-LLaMA-Factory训练框架及工具,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

搭建一个本地中文大语言模型(LLM)涉及多个关键步骤,从选择模型底座,到运行机器和框架,再到具体的架构实现和训练方式。以下是一个详细的指南,帮助你从零开始构建和运行一个中文大语言模型。

本地离线模型搭建指南将按照以下四个部分展开

  1. 中文大语言模型底座选择依据
  2. 本地运行显卡选择
  3. RAG架构实现
  4. LLaMA-Factory训练框架及工具

4 训练架构及工具

4.1 为什么要使用LLaMA-Factory进行训练

LLaMA-Factory是一个专为大模型训练设计的开源平台,具有以下几个优势:

  1. 快速学习和应用: 对于没有微调大模型经验的用户,通过学习LLaMA-Factory后,可以快速地训练出自己需要的模型。
  2. 理解微调技术: 对于技术人员,LLaMA-Factory提供了一个很好的学习平台,通过阅读源码,可以深入了解大模型的微调技术。
  3. 捷径: LLaMA-Factory为用户提供了一条走向大模型微调的捷径,使用户能够快速掌握相关概念和技术。

4.2 LLaMA-Factory训练所能解决的问题

  1. 大模型的实际应用: 企业想要利用大模型进行实际应用时,必须懂得微调的过程,而LLaMA-Factory提供了一个实用的平台来实现这一点。
  2. 个性化模型训练: 用户可以通过LLaMA-Factory快速训练出适合自己需求的模型,满足不同领域的具体要求。
  3. 技术理解和提升: 技术人员可以通过LLaMA-Factory的源码学习,进一步理解大模型的微调技术,并应用于实际项目中。

4.3 LLaMA-Factory的训练步骤和方法

4.3.1 模型训练阶段
  1. 预训练阶段(Pre-Training):
    预训练是大模型训练的初始阶段,主要目的是通过大规模数据集训练基础模型。这一步是最消耗计算资源的,通常需要使用大量的计算集群。
  2. 监督微调阶段(Supervised Finetuning, SFT):
    这个阶段的训练数据质量较高,通常由人工筛选或生成。经过这个阶段的模型已经具备上线的能力。
  3. 基于人类反馈的强化学习(RLHF):
    1. 奖励建模阶段(Reward Modeling): 在这个阶段,模型不仅输出预测的内容,还输出一个奖励值(评分值),用于后续的强化学习。
    2. 强化学习阶段(Reinforcement Learning): 通过奖励模型对多个输出进行评分,并基于评分进行加权,反向传播调整模型参数。
4.3.2 模型训练模式

根据具体需求,可以选择不同的训练模式:

  1. 模式一: 基于base模型 + 领域任务的SFT
  2. 模式二: 基于base模型 + 领域数据 continue pre-train + 领域任务SFT
  3. 模式三: 基于base模型 + 领域数据 continue pre-train + 通用任务SFT + 领域任务SFT
  4. 模式四: 基于base模型 + 领域数据 continue pre-train + 通用任务与领域任务混合SFT
  5. 模式五: 基于base模型 + 领域数据 continue pre-train(混入SFT数据 + 通用任务与领域任务混合SFT)
  6. 模式六: 基于chat模型 + 领域任务SFT
  7. 模式七: 基于chat模型 + 领域数据 continue pre-train + 领域任务SFT
4.3.3 是否需要继续预训练(continue pre-train)
  1. 数据集差异大: 如果领域任务的数据集与预训练的数据集差异较大,建议进行continue pre-train。
  2. 数据量较大: 如果领域任务的数据量较大(token在1B以上),并且只追求领域任务的效果,也建议进行continue pre-train。
4.3.4 选择chat模型还是base模型
  1. base模型: 如果希望模型的通用能力不下降,建议选择base模型进行多任务混合训练。
  2. chat模型: 如果只追求领域任务的效果,可以选择chat模型进行领域任务的SFT。

4.4 实践建议

  1. 资源充足: 如只考虑领域任务效果,建议选择模式二;如考虑模型综合能力,建议选择模式五。
  2. 资源有限: 建议选择模式六。
  3. 一般情况下: 不进行RLHF微调。

4.5 开发工具库

LLaMA-Factory使用了一些关键的开发工具库,包括Transformers和PEFT库,后者提供了多种高效的微调方法,如LoRA、AdaLoRA、P-tuning等。

通过以上步骤和方法,用户可以有效地使用LLaMA-Factory进行大模型的微调训练,满足不同领域和任务的需求。

4.6 本地LLaMA-Factory训练模型实践运行配置

底座包含模型模型参数大小机器配置显存大小是否可运行
ChatGLMChatGLM3-6B6BCPU 16核心 32G内存未测试
ChatGLMChatGLM3-6B6B显卡4070Ti16G可以
ChatGLMChatGLM4-9B9B显卡4070Ti16G未测试
LLaMAChinese-LlaMA27B显卡3060Ti8G未测试
QwenQwen1.57B显卡4070Ti16G可以

更多详细信息,请访问

从LLaMA-Factory项目认识微调

LLaMA-Factory QuickStart

5 结论

搭建本地中文大语言模型是一个复杂而系统的工程,涉及模型选择、硬件配置、框架选择、架构实现、训练工具和方法等多个方面。通过合理选择和配置,可以在本地成功搭建并运行一个高性能的中文大语言模型。

更多详细信息,请访问

从LLaMA-Factory项目认识微调

LLaMA-Factory QuickStart

这篇关于本地离线模型搭建指南-LLaMA-Factory训练框架及工具的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1088189

相关文章

使用Java读取本地文件并转换为MultipartFile对象的方法

《使用Java读取本地文件并转换为MultipartFile对象的方法》在许多JavaWeb应用中,我们经常会遇到将本地文件上传至服务器或其他系统的需求,在这种场景下,MultipartFile对象非... 目录1. 基本需求2. 自定义 MultipartFile 类3. 实现代码4. 代码解析5. 自定

使用Python实现一个简易计算器的新手指南

《使用Python实现一个简易计算器的新手指南》计算器是编程入门的经典项目,它涵盖了变量、输入输出、条件判断等核心编程概念,通过这个小项目,可以快速掌握Python的基础语法,并为后续更复杂的项目打下... 目录准备工作基础概念解析分步实现计算器第一步:获取用户输入第二步:实现基本运算第三步:显示计算结果进

Python利用PySpark和Kafka实现流处理引擎构建指南

《Python利用PySpark和Kafka实现流处理引擎构建指南》本文将深入解剖基于Python的实时处理黄金组合:Kafka(分布式消息队列)与PySpark(分布式计算引擎)的化学反应,并构建一... 目录引言:数据洪流时代的生存法则第一章 Kafka:数据世界的中央神经系统消息引擎核心设计哲学高吞吐

Python多线程应用中的卡死问题优化方案指南

《Python多线程应用中的卡死问题优化方案指南》在利用Python语言开发某查询软件时,遇到了点击搜索按钮后软件卡死的问题,本文将简单分析一下出现的原因以及对应的优化方案,希望对大家有所帮助... 目录问题描述优化方案1. 网络请求优化2. 多线程架构优化3. 全局异常处理4. 配置管理优化优化效果1.

Java实现本地缓存的四种方法实现与对比

《Java实现本地缓存的四种方法实现与对比》本地缓存的优点就是速度非常快,没有网络消耗,本地缓存比如caffine,guavacache这些都是比较常用的,下面我们来看看这四种缓存的具体实现吧... 目录1、HashMap2、Guava Cache3、Caffeine4、Encache本地缓存比如 caff

Java高效实现Word转PDF的完整指南

《Java高效实现Word转PDF的完整指南》这篇文章主要为大家详细介绍了如何用Spire.DocforJava库实现Word到PDF文档的快速转换,并解析其转换选项的灵活配置技巧,希望对大家有所帮助... 目录方法一:三步实现核心功能方法二:高级选项配置性能优化建议方法补充ASPose 实现方案Libre

Python中高级文本模式匹配与查找技术指南

《Python中高级文本模式匹配与查找技术指南》文本处理是编程世界的永恒主题,而模式匹配则是文本处理的基石,本文将深度剖析PythonCookbook中的核心匹配技术,并结合实际工程案例展示其应用,希... 目录引言一、基础工具:字符串方法与序列匹配二、正则表达式:模式匹配的瑞士军刀2.1 re模块核心AP

MySQL 数据库表操作完全指南:创建、读取、更新与删除实战

《MySQL数据库表操作完全指南:创建、读取、更新与删除实战》本文系统讲解MySQL表的增删查改(CURD)操作,涵盖创建、更新、查询、删除及插入查询结果,也是贯穿各类项目开发全流程的基础数据交互原... 目录mysql系列前言一、Create(创建)并插入数据1.1 单行数据 + 全列插入1.2 多行数据

MySQL中优化CPU使用的详细指南

《MySQL中优化CPU使用的详细指南》优化MySQL的CPU使用可以显著提高数据库的性能和响应时间,本文为大家整理了一些优化CPU使用的方法,大家可以根据需要进行选择... 目录一、优化查询和索引1.1 优化查询语句1.2 创建和优化索引1.3 避免全表扫描二、调整mysql配置参数2.1 调整线程数2.

Java报错:org.springframework.beans.factory.BeanCreationException的五种解决方法

《Java报错:org.springframework.beans.factory.BeanCreationException的五种解决方法》本文解析Spring框架中BeanCreationExce... 目录引言一、问题描述1.1 报错示例假设我们有一个简单的Java类,代表一个用户信息的实体类:然后,