Python——常用数据降维算法应用

2024-06-22 21:52

本文主要是介绍Python——常用数据降维算法应用,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

随着数据的积累,数据的维度越来越高,高维的数据在带来更多信息的同时,也带来了信息冗余、计算困难等问题,所以对数据进行合理的降维,并保留主要信息非常重要。这些问题主要可以通过主成分分析及相关的降维算法来解决。

一些经典的降维算法有:主成分分析、MSD降维、t-SNE降维等。

1: 数据准备

将会使用手写体数字数据,该数据一共有1797个样本,每个图像包含64个像素值,数据导入后的情况如下所示:

## 导入数据,该数据有1797个样本,每个图像包含64个像素值
digit = pd.read_csv("data/chap06/digit.csv",header=None)
## 获取待使用的数据
digitX = digit.values[:,0:-1]/16
digitY = digit.values[:,64]
digit

2: 主成分分析数据降维

主成分分析可以通过Sklearn库中的PCA来完成,下面的程序对前面的手写数字数据集,使用主成分分析将其降维到64维,然后可视化分析每个主成分的解释方差,以及主成分的累计方差贡献率,运行程序后可获得可视化图像。

## 对数据进行主成分降维分析
pca = PCA(n_components = 64,  # 获取的主成分数量random_state = 123# 设置随机数种子,保证结果的可重复性
## 对数据进行降维
digitX_pca = pca.fit_transform(digitX)## 可视化分析每个主成分的解释方差和解释方差所占百分比
x = np.arange(digitX_pca.shape[1])+1
plt.figure(figsize=(12,6))
plt.subplot(1,2,1)
plt.plot(x,pca.explained_variance_,"r-o")
plt.xlabel("主成分个数")
plt.ylabel("解释方差")
plt.title("解释方差变化情况")
plt.subplot(1,2,2)
plt.plot(x,np.cumsum(pca.explained_variance_ratio_),"b-s")
plt.xlabel("主成分个数")
plt.ylabel("解释方差")
plt.title("累计解释方差贡献率变化情况")
plt.tight_layout()
plt.show()

可以发现:数据中的在大约20个主成分之后,每个主成分的解释方差已经接近于0,而且前20个主成分的原始数据解释能力超过了百分之90,说明从主成分特征中选取其中的前20个即可代表该数据。

针对主成分数据降维的效果,可以使用其前3个主成分,利用可视化的方式,查看算法的数据降维效果。

3: 流形学习——等距映射

流形学习中的等距嵌入降维算法,可以通过Isomap()来完成,下面的程序是通过流形学习,将手写数字数据集降维到3维空间中,然后使用可视化的方式绘制降维后的3D散点图。

## 流形学习将数据降维到3维空间中
isom = Isomap(n_neighbors=5, n_components=3) 
digitX_isom = isom.fit_transform(digitX)
## 在三维空间中可视化前三个特征数据分布散点图
plotdata3D(digitX_isom,digitY,"流形学习特征")

4: t-SNE数据降维

t-SNE降维算法,可以通过TSNE()来完成,下面的程序是通过t-SNE降维算法,将手写数字数据集降维到3维空间中,然后使用可视化的方式绘制降维后的3D散点图。

## t-SNE将数据降维到3维空间中
tsne = TSNE(n_components=3, perplexity=20,early_exaggeration=5, random_state=123) 
digitX_tsne = tsne.fit_transform(digitX)
## 在三维空间中可视化前三个特征数据分布散点图
plotdata3D(digitX_tsne,digitY,"TSNE特征")

参考文献:《Python机器学习:基础、算法与实战》作者:孙玉林 出版社:化学工业出版社

欢迎关注我们

欢迎加入我们的QQ交流群获取使用的数据:837977579

欢迎关注我们的微信公众号“Adam大数据分析小站”获取更多内容

今天的分享就到这里了,敬请期待下一篇!

最后欢迎大家分享转发,您的点赞是对我的鼓励和肯定!

这篇关于Python——常用数据降维算法应用的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1085511

相关文章

python常见环境管理工具超全解析

《python常见环境管理工具超全解析》在Python开发中,管理多个项目及其依赖项通常是一个挑战,下面:本文主要介绍python常见环境管理工具的相关资料,文中通过代码介绍的非常详细,需要的朋友... 目录1. conda2. pip3. uvuv 工具自动创建和管理环境的特点4. setup.py5.

SQL Server修改数据库名及物理数据文件名操作步骤

《SQLServer修改数据库名及物理数据文件名操作步骤》在SQLServer中重命名数据库是一个常见的操作,但需要确保用户具有足够的权限来执行此操作,:本文主要介绍SQLServer修改数据... 目录一、背景介绍二、操作步骤2.1 设置为单用户模式(断开连接)2.2 修改数据库名称2.3 查找逻辑文件名

Python常用命令提示符使用方法详解

《Python常用命令提示符使用方法详解》在学习python的过程中,我们需要用到命令提示符(CMD)进行环境的配置,:本文主要介绍Python常用命令提示符使用方法的相关资料,文中通过代码介绍的... 目录一、python环境基础命令【Windows】1、检查Python是否安装2、 查看Python的安

Python UV安装、升级、卸载详细步骤记录

《PythonUV安装、升级、卸载详细步骤记录》:本文主要介绍PythonUV安装、升级、卸载的详细步骤,uv是Astral推出的下一代Python包与项目管理器,主打单一可执行文件、极致性能... 目录安装检查升级设置自动补全卸载UV 命令总结 官方文档详见:https://docs.astral.sh/

Python并行处理实战之如何使用ProcessPoolExecutor加速计算

《Python并行处理实战之如何使用ProcessPoolExecutor加速计算》Python提供了多种并行处理的方式,其中concurrent.futures模块的ProcessPoolExecu... 目录简介完整代码示例代码解释1. 导入必要的模块2. 定义处理函数3. 主函数4. 生成数字列表5.

Python中help()和dir()函数的使用

《Python中help()和dir()函数的使用》我们经常需要查看某个对象(如模块、类、函数等)的属性和方法,Python提供了两个内置函数help()和dir(),它们可以帮助我们快速了解代... 目录1. 引言2. help() 函数2.1 作用2.2 使用方法2.3 示例(1) 查看内置函数的帮助(

Python虚拟环境与Conda使用指南分享

《Python虚拟环境与Conda使用指南分享》:本文主要介绍Python虚拟环境与Conda使用指南,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、python 虚拟环境概述1.1 什么是虚拟环境1.2 为什么需要虚拟环境二、Python 内置的虚拟环境工具

Python实例题之pygame开发打飞机游戏实例代码

《Python实例题之pygame开发打飞机游戏实例代码》对于python的学习者,能够写出一个飞机大战的程序代码,是不是感觉到非常的开心,:本文主要介绍Python实例题之pygame开发打飞机... 目录题目pygame-aircraft-game使用 Pygame 开发的打飞机游戏脚本代码解释初始化部

Python pip下载包及所有依赖到指定文件夹的步骤说明

《Pythonpip下载包及所有依赖到指定文件夹的步骤说明》为了方便开发和部署,我们常常需要将Python项目所依赖的第三方包导出到本地文件夹中,:本文主要介绍Pythonpip下载包及所有依... 目录步骤说明命令格式示例参数说明离线安装方法注意事项总结要使用pip下载包及其所有依赖到指定文件夹,请按照以

Python实现精准提取 PDF中的文本,表格与图片

《Python实现精准提取PDF中的文本,表格与图片》在实际的系统开发中,处理PDF文件不仅限于读取整页文本,还有提取文档中的表格数据,图片或特定区域的内容,下面我们来看看如何使用Python实... 目录安装 python 库提取 PDF 文本内容:获取整页文本与指定区域内容获取页面上的所有文本内容获取