【球类识别系统】图像识别Python+卷积神经网络算法+人工智能+深度学习+TensorFlow

本文主要是介绍【球类识别系统】图像识别Python+卷积神经网络算法+人工智能+深度学习+TensorFlow,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、介绍

球类识别系统,本系统使用Python作为主要编程语言,基于TensorFlow搭建ResNet50卷积神经网络算法模型,通过收集 ‘美式足球’, ‘棒球’, ‘篮球’, ‘台球’, ‘保龄球’, ‘板球’, ‘足球’, ‘高尔夫球’, ‘曲棍球’, ‘冰球’, ‘橄榄球’, ‘羽毛球’, ‘乒乓球’, ‘网球’, '排球’等15种常见的球类图像作为数据集,然后进行训练,最终得到一个识别精度较高的模型文件。再使用Django开发Web网页端可视化界面平台,实现用户上传一张球类图片识别其名称。

二、系统效果图片展示

img_06_22_15_30_11

img_06_22_15_31_16

img_06_22_15_31_32

三、演示视频 and 完整代码 and 安装

地址:https://www.yuque.com/ziwu/yygu3z/ocsfgr1rg9b2bs2w

四、ResNet50算法介绍

ResNet50是一种深度卷积神经网络(CNN),专为图像识别和分类任务设计。它是ResNet网络家族的一员,其中“ResNet”代表残差网络。这种网络的主要特点是它能够通过使用所谓的“残差块”来训练极深的神经网络,而不会出现梯度消失或爆炸的问题。每个残差块包括跳跃连接,允许输入直接跳过一些层。这些连接帮助网络学习恒等映射,保证了网络在增加深度的同时,性能不会下降。
卷积神经网络(CNN)是一类特别适用于处理具有明显层次或空间结构的数据(如图像)的深度学习模型。CNN通过使用卷积层来自动和有效地捕捉图像中的空间和时间依赖性,无需手动特征工程。每个卷积层通过滤波器对图像执行操作,这些滤波器能够捕捉图像的局部依赖性和重要特征。
在图像识别应用中,ResNet50和其他CNN模型通常需要大量标记数据来训练。一旦训练完成,这些模型可以用于新图像的分类,物体检测,甚至场景理解。ResNet50因其深度和效率,在处理复杂图像任务时表现出色,尤其是在需要识别或分类大量对象类别的场景中。
下面是一个使用Python和Keras框架加载预训练的ResNet50模型,并用它来预测输入图像类别的示例代码:

from keras.applications.resnet50 import ResNet50, preprocess_input, decode_predictions
from keras.preprocessing import image
import numpy as np# 加载预训练的ResNet50模型
model = ResNet50(weights='imagenet')# 加载一张图片,调整大小到224x224
img_path = 'your_image.jpg'
img = image.load_img(img_path, target_size=(224, 224))# 将图片转换成模型可读的格式
x = image.img_to_array(img)
x = np.expand_dims(x, axis=0)
x = preprocess_input(x)# 使用ResNet50进行预测
predictions = model.predict(x)# 输出预测结果
print('Predicted:', decode_predictions(predictions, top=3)[0])

这段代码演示了如何利用深度学习和具体的网络架构来实现高效的图像识别。

这篇关于【球类识别系统】图像识别Python+卷积神经网络算法+人工智能+深度学习+TensorFlow的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1085443

相关文章

Django开发时如何避免频繁发送短信验证码(python图文代码)

《Django开发时如何避免频繁发送短信验证码(python图文代码)》Django开发时,为防止频繁发送验证码,后端需用Redis限制请求频率,结合管道技术提升效率,通过生产者消费者模式解耦业务逻辑... 目录避免频繁发送 验证码1. www.chinasem.cn避免频繁发送 验证码逻辑分析2. 避免频繁

精选20个好玩又实用的的Python实战项目(有图文代码)

《精选20个好玩又实用的的Python实战项目(有图文代码)》文章介绍了20个实用Python项目,涵盖游戏开发、工具应用、图像处理、机器学习等,使用Tkinter、PIL、OpenCV、Kivy等库... 目录① 猜字游戏② 闹钟③ 骰子模拟器④ 二维码⑤ 语言检测⑥ 加密和解密⑦ URL缩短⑧ 音乐播放

python panda库从基础到高级操作分析

《pythonpanda库从基础到高级操作分析》本文介绍了Pandas库的核心功能,包括处理结构化数据的Series和DataFrame数据结构,数据读取、清洗、分组聚合、合并、时间序列分析及大数据... 目录1. Pandas 概述2. 基本操作:数据读取与查看3. 索引操作:精准定位数据4. Group

Python pandas库自学超详细教程

《Pythonpandas库自学超详细教程》文章介绍了Pandas库的基本功能、安装方法及核心操作,涵盖数据导入(CSV/Excel等)、数据结构(Series、DataFrame)、数据清洗、转换... 目录一、什么是Pandas库(1)、Pandas 应用(2)、Pandas 功能(3)、数据结构二、安

Python使用Tenacity一行代码实现自动重试详解

《Python使用Tenacity一行代码实现自动重试详解》tenacity是一个专为Python设计的通用重试库,它的核心理念就是用简单、清晰的方式,为任何可能失败的操作添加重试能力,下面我们就来看... 目录一切始于一个简单的 API 调用Tenacity 入门:一行代码实现优雅重试精细控制:让重试按我

深度解析Spring Security 中的 SecurityFilterChain核心功能

《深度解析SpringSecurity中的SecurityFilterChain核心功能》SecurityFilterChain通过组件化配置、类型安全路径匹配、多链协同三大特性,重构了Spri... 目录Spring Security 中的SecurityFilterChain深度解析一、Security

Python安装Pandas库的两种方法

《Python安装Pandas库的两种方法》本文介绍了三种安装PythonPandas库的方法,通过cmd命令行安装并解决版本冲突,手动下载whl文件安装,更换国内镜像源加速下载,最后建议用pipli... 目录方法一:cmd命令行执行pip install pandas方法二:找到pandas下载库,然后

Python实现网格交易策略的过程

《Python实现网格交易策略的过程》本文讲解Python网格交易策略,利用ccxt获取加密货币数据及backtrader回测,通过设定网格节点,低买高卖获利,适合震荡行情,下面跟我一起看看我们的第一... 网格交易是一种经典的量化交易策略,其核心思想是在价格上下预设多个“网格”,当价格触发特定网格时执行买

Python标准库之数据压缩和存档的应用详解

《Python标准库之数据压缩和存档的应用详解》在数据处理与存储领域,压缩和存档是提升效率的关键技术,Python标准库提供了一套完整的工具链,下面小编就来和大家简单介绍一下吧... 目录一、核心模块架构与设计哲学二、关键模块深度解析1.tarfile:专业级归档工具2.zipfile:跨平台归档首选3.

使用Python构建智能BAT文件生成器的完美解决方案

《使用Python构建智能BAT文件生成器的完美解决方案》这篇文章主要为大家详细介绍了如何使用wxPython构建一个智能的BAT文件生成器,它不仅能够为Python脚本生成启动脚本,还提供了完整的文... 目录引言运行效果图项目背景与需求分析核心需求技术选型核心功能实现1. 数据库设计2. 界面布局设计3