coursera-斯坦福-机器学习-吴恩达-第10周笔记-使用大数据训练

本文主要是介绍coursera-斯坦福-机器学习-吴恩达-第10周笔记-使用大数据训练,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

coursera-斯坦福-机器学习-吴恩达-第10周笔记-使用大数据训练

  • coursera-斯坦福-机器学习-吴恩达-第10周笔记-使用大数据训练
    • 大数据下的梯度下降
      • 1 大数据
      • 2 随机梯度下降
      • 3 mini-batch梯度下降
      • 4 随机梯度下降的收敛性
    • 大数据的高级技巧
      • 1在线学习
      • 2 mapreduce
    • 3quiz

1 大数据下的梯度下降

在接下来的几个视频里 ,我们会讲大规模的机器学习, 就是用来处理大数据的算法。 如果我们看近5到10年的机器学习的历史 ,现在的学习算法比5年前的好很多, 其中的原因之一就是我们现在拥有很多可以训练算法的数据 。

1.1 大数据

为什么我们喜欢用大的数据集呢?
我们已经知道 得到一个高效的机器学习系统的最好的方式之一是 用一个低偏差的学习算法 ,然后用很多数据来训练它.

当然 ,在我们训练一个上亿条数据的模型之前 ,我们还应该问自己: 为什么不用几千条数据呢 ?也许我们可以随机从上亿条的数据集里选个一千条的子集,然后用我们的算法计算。

通常的方法是画学习曲线 :

image

  • 如果你要绘制学习曲线,并且如果你的训练目标看起来像是左边的,而你的交叉验证集目标,theta的Jcv,那么这看起来像是一个高方差学习算法,所以加入额外的训练样例
    提高性能。

  • 右边看起来像传统的高偏见学习算法,那么看起来不大可能增加1亿到1亿将会更好,然后你会坚持n等于1000,而不是花费很多的精力弄清楚算法的规模如何。

  • 正确的做法之一是增加额外的特性,或者为神经网络增加额外的隐藏单位等等,这样你就可以得到更接近于左边的情况,在这种情况下可能达到n 等于1000,这样就给了你更多的信心,试图添加基础设施(下部构造)来改变算法,使用更多的例子,可能实际上是一个很好的利用你的时间。

1.2 随机梯度下降

对于很多机器学习算法, 包括线性回归、逻辑回归、神经网络等等, 算法的实现都是通过得出某个代价函数 或者某个最优化的目标来实现的, 然后使用梯度下降这样的方法来求得代价函数的最小值。

当我们的训练集较大时 ,梯度下降算法则显得计算量非常大 ,在这段视频中 我想介绍一种跟普通梯度下降不同的方法 随机梯度下降(stochastic gradient descent) 。

他的主要思想是:

{在每次迭代中不需要看所有的训练样例,但是在一次迭代中只需要看一个训练样例}

image

第一步是打乱数据 第二步是算法的关键 是关于某个单一的训练样本(x(i),y(i))来对参数进行更新

对于随即梯度下降来说,有以下说法:
1. 当训练集的个数m很大的时候,随即梯度下降比梯度下降要快很多。
2. 对与损失函数 Jtrain(θ)=1

这篇关于coursera-斯坦福-机器学习-吴恩达-第10周笔记-使用大数据训练的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1084634

相关文章

Java使用HttpClient实现图片下载与本地保存功能

《Java使用HttpClient实现图片下载与本地保存功能》在当今数字化时代,网络资源的获取与处理已成为软件开发中的常见需求,其中,图片作为网络上最常见的资源之一,其下载与保存功能在许多应用场景中都... 目录引言一、Apache HttpClient简介二、技术栈与环境准备三、实现图片下载与保存功能1.

Python中使用uv创建环境及原理举例详解

《Python中使用uv创建环境及原理举例详解》uv是Astral团队开发的高性能Python工具,整合包管理、虚拟环境、Python版本控制等功能,:本文主要介绍Python中使用uv创建环境及... 目录一、uv工具简介核心特点:二、安装uv1. 通过pip安装2. 通过脚本安装验证安装:配置镜像源(可

LiteFlow轻量级工作流引擎使用示例详解

《LiteFlow轻量级工作流引擎使用示例详解》:本文主要介绍LiteFlow是一个灵活、简洁且轻量的工作流引擎,适合用于中小型项目和微服务架构中的流程编排,本文给大家介绍LiteFlow轻量级工... 目录1. LiteFlow 主要特点2. 工作流定义方式3. LiteFlow 流程示例4. LiteF

使用Python开发一个现代化屏幕取色器

《使用Python开发一个现代化屏幕取色器》在UI设计、网页开发等场景中,颜色拾取是高频需求,:本文主要介绍如何使用Python开发一个现代化屏幕取色器,有需要的小伙伴可以参考一下... 目录一、项目概述二、核心功能解析2.1 实时颜色追踪2.2 智能颜色显示三、效果展示四、实现步骤详解4.1 环境配置4.

canal实现mysql数据同步的详细过程

《canal实现mysql数据同步的详细过程》:本文主要介绍canal实现mysql数据同步的详细过程,本文通过实例图文相结合给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的... 目录1、canal下载2、mysql同步用户创建和授权3、canal admin安装和启动4、canal

使用jenv工具管理多个JDK版本的方法步骤

《使用jenv工具管理多个JDK版本的方法步骤》jenv是一个开源的Java环境管理工具,旨在帮助开发者在同一台机器上轻松管理和切换多个Java版本,:本文主要介绍使用jenv工具管理多个JD... 目录一、jenv到底是干啥的?二、jenv的核心功能(一)管理多个Java版本(二)支持插件扩展(三)环境隔

SQL中JOIN操作的条件使用总结与实践

《SQL中JOIN操作的条件使用总结与实践》在SQL查询中,JOIN操作是多表关联的核心工具,本文将从原理,场景和最佳实践三个方面总结JOIN条件的使用规则,希望可以帮助开发者精准控制查询逻辑... 目录一、ON与WHERE的本质区别二、场景化条件使用规则三、最佳实践建议1.优先使用ON条件2.WHERE用

Java中Map.Entry()含义及方法使用代码

《Java中Map.Entry()含义及方法使用代码》:本文主要介绍Java中Map.Entry()含义及方法使用的相关资料,Map.Entry是Java中Map的静态内部接口,用于表示键值对,其... 目录前言 Map.Entry作用核心方法常见使用场景1. 遍历 Map 的所有键值对2. 直接修改 Ma

MySQL 衍生表(Derived Tables)的使用

《MySQL衍生表(DerivedTables)的使用》本文主要介绍了MySQL衍生表(DerivedTables)的使用,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学... 目录一、衍生表简介1.1 衍生表基本用法1.2 自定义列名1.3 衍生表的局限在SQL的查询语句select

Mybatis Plus Join使用方法示例详解

《MybatisPlusJoin使用方法示例详解》:本文主要介绍MybatisPlusJoin使用方法示例详解,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,... 目录1、pom文件2、yaml配置文件3、分页插件4、示例代码:5、测试代码6、和PageHelper结合6