算法设计与分析:分治法求最近点对问题

2024-06-21 18:52

本文主要是介绍算法设计与分析:分治法求最近点对问题,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

实验目的

1. 掌握分治法思想;

2. 学会最近点对问题求解方法。

、实验内容

1. 对于平面上给定的N个点,给出所有点对的最短距离,即,输入是平面上的N个点,输出是N点中具有最短距离的两点。

2. 要求随机生成N个点的平面坐标,应用蛮力法编程计算出所有点对的最短距离。

3. 要求随机生成N个点的平面坐标,应用分治法编程计算出所有点对的最短距离。

4. 分别对N=100000~1000000,统计算法运行时间,比较理论效率与实测效率的差异,同时对蛮力法和分治法的算法效率进行分析和比较。

5. 如果能将算法执行过程利用图形界面输出,可获加分。

算法思想

1. 预处理:根据输入点集S中的x轴和y轴坐标进行排序,得到X和Y,很显然此时X和Y中的点就是S中的点。

2. 点数较少时的情形

3. 点数|S|>3时,将平面点集S分割成为大小大致相等的两个子集SL和SR,选取一个垂直线L作为分割直线,如何以最快的方法尽可能均匀平分?注意这个操作如果达到效率O(n^2),将导致整个算法效率达O(n^2)。

4. 两个递归调用,分别求出SL和SR中的最短距离为dl和dr。

5. 取d=min(dl, dr),在直线L两边分别扩展d,得到边界区域Y,Y'是区域Y中的点按照y坐标值排序后得到的点集(为什么要排序?),Y'又可分为左右两个集合Y'L和Y'R

6. 对于Y'L中的每一点,检查Y'R中的点与它的距离,更新所获得的最近距离,注意这个步骤的算法效率,请务必做到线性效率,并在实验报告中详细解释为什么能做到线性效率?

、实验步骤

先定义全局变量和点结构:

#define max 10000000000;//假定最大距离
int n,m,**v;
//n为规模,m为创建点集合过程时的点数,v用于判断是否已有该点(rand不产生大于40000的数)
double time1,time2;//蛮力法、分治法花费的时间
double dt1,dt2;//蛮力法、分治法求得的最近距离
//---------------------------
struct D{//点结构int x=0,y=0;
};
D a1,b1,a2,b2;//a1、b1为蛮力法求得的点的下标,a2、b2为分治法求得的点的下标
D *k,*p;//蛮力法、分治法用的点集合

1、蛮力法

        对前面n-1个点的每一个点,均与在其后面的每个点进行距离计算,并与最小距离min比较,若比min小,则更新min的值,时间复杂度为O(n2)。

    伪代码:

Manli(A)min=Infinity//最小距离for i=0 to A.length-1for j=i+1 to A.lengthd=dis(A[i],A[j])//A[i]、A[j]两点的距离if d<minmin=da=ib=ja1=ab1=breturn min

2、分治法

2.1 先用快速排序SortX(A,1,n)将所有点按x坐标升序排序

        方便分治均匀,时间复杂度为O(nlgn)。 

SortX(l,r)i=l,j=r,keyx=A[l].x,keyy=A[l].y //Array A is a global variablewhile i<jwhile i<j and A[j].x>=keyxj--if i<jA[i]=A[j]i++elsebreakwhile i<j and A[i].x<=keyxi++if i<jA[j]=A[i]j--A[i].x=keyx,A[i].y=keyyif(l<i-1) SortX(l,i-1)if(i+1<r) SortX(i+1,r)
2.2 点数n<=3时直接计算,时间复杂度为O(1)

2.3 点数n>3

        将平面点集S分割成为大小大致相等的两个子集SL和SR,选取一个垂直线L(以x坐标居中的为分治点,上面已排序好了)作为分割直线。

        两个子集递归调用(当只有一个元素时返回无穷大,两个时按y升序排序这两个元素),分别求出SL和SR中的最短距离dl和dr。

        取最小值d=min(dl, dr),在直线L两边分别扩展d,得到边界区域Y。       

        然后用Marge(l,mid,r)函数按纵坐标升序归并左右两部分点集合,时间复杂度O(n)

        由于前面点已按y升序排序,所以在区域Y中,两点距离小于当前min的可能情况为在一个长2*d,、宽d的长方形内。

        由于已知两边的最小距离为d,则对在这个长方形内任意一点P,距P为d的点Q的个数不超过6个,例如下面的点P最多在左右两个正方形的6条边上各有一个点距P为d(但是此情况下,在同一个正方形内的其他两个点的距离已经小于当前最小距离小于d了,所以可能的点数不超过6);

        再或者是说,在这个长方形内,最多就六个点相距d,即六个顶点。

        所以,只需要对t点集中的每个点与其后面的5个点比较距离是否小于当前最小距离d并更新d就行。时间复杂度O(n)。

        综上所述,T(n)=2*T(n/2)+f(n)。f(n)为Marge和遍历t点集,时间复杂度均为O(n),共递归lgn次,则时间复杂度为O(nlgn)。前面按x坐标排序的时间复杂度为O(nlgn),所以总的时间复杂度为O(nlgn)。

        伪代码如下:

Fenzhi(l,r)if l==r //一个点return max //直接返回无穷大if l+1==r //两个点,按y升序排序a2=A[l]b2=A[r]A[l]=a2.y<b2.y?a2:b2 //y坐标较小的点A[r]=a2.y>b2.y?a2:b2 //y坐标较大的点return dis(A[l],A[r])if l+1<r //点数大于2mid=(r+l)/2 mid为分治中点,将点集合划分为左右均匀的两部分d=min(Fenzhi(l,mid),Fenzhi(mid+1,r))//d取左右两部分最小距离的较小值Merge(l,mid,r) //按纵坐标升序归并左右两部分的点*t=new Point[r-l+1]//记录跨中线且距离分治中点d水平距离小于当前最小值d的异侧点tn=0 //t点集的元素个数for i=1 to rif A[i].x>(A[i].x-d) and A[i].x<(A[i].x+d)//异侧且距分治中心mid小于d则入tt[tn++]=A[i]for i=0 to tn-1for j=i+1 to tn-1 and j<i+6 //往后判断5个点//t[]中y升序,若y坐标差已超过当前d,break,判断下一个点if t[j].y-t[i].y>dbreakif dis(t[i],t[j])<d //如果当前点距离小于等于当前d,则对最小距离d进行更新d=dis(t[i],t[j])a2=t[i]b2=t[j]return d //返回当前分治的最小距离

        运行结果如下(取其中两例):两种方法求得的最近距离一致(虽然不一定是同一对点),且分治法更快。可见算法查找正确。

五、实验结果和分析

        分别对N=100000~1000000,统计算法运行时间,比较理论效率与实测效率的差异,同时对蛮力法和分治法的算法效率进行分析和比较。

        这里修改了代码,对每个规模N均运行5趟取平均时间。

算法

规模N:

5000

10000

20000

30000

50000

70000

100000

蛮力法

实测效率/s

0.334

1.2372

4.7186

10.0754

30.1722

59.1302

120.953

理论效率/s

0.3076

1.2304

4.9216

11.0736

30.76

60.2896

123.04

                                                                             表1

算法

规模N:

50000

100000

200000

300000

500000

700000

1000000

分治法

实测效率/s

0.058

0.156

0.266

0.3618

0.726

1.012

1.44

理论效率/s

0.0601

0.1278

0.271

0.42

0.7283

1.0458

1.5336

        对于蛮力法,

                                                                 T实测=k·n2实测      

                                                                 T理论=k·n2理论

        所以可得                                       

                                                        T理论=T实测·(n理论/n实测)2

        根据上式,以N=10000为基准,求出蛮力法的理论效率。

        对于分治法

                                                                T实测=k·n实测lgn实测      

                                                                T理论=k·n理论lgn理论

        所以可得           

                                                T理论=T实测·(n理论·lgn理论)/(n实测·lgn实测)

        根据上式,以N=100000为基准,求出分治法的理论效率。

        作出蛮力法的实测效率和理论效率曲线图如下:

        可以看出,实测效率和理论效率曲线贴合度很高,也都符合n2二次曲线。n=100000时的时间消耗,基本约为n=10000时的100倍。

        作出分治法的实测效率和理论效率的曲线图如下:

        可以看出,分治法的实测曲线和理论曲线贴合度还行,但没有蛮力法的两条贴合度高,可能是由于实验次数不够大(只进行5次取平均)。符合nlgn型曲线走势。

        对比两种方法,分治法效率明显由于蛮力法,尤其是当规模N持续增大时。

这篇关于算法设计与分析:分治法求最近点对问题的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1082051

相关文章

Vue3绑定props默认值问题

《Vue3绑定props默认值问题》使用Vue3的defineProps配合TypeScript的interface定义props类型,并通过withDefaults设置默认值,使组件能安全访问传入的... 目录前言步骤步骤1:使用 defineProps 定义 Props步骤2:设置默认值总结前言使用T

Web服务器-Nginx-高并发问题

《Web服务器-Nginx-高并发问题》Nginx通过事件驱动、I/O多路复用和异步非阻塞技术高效处理高并发,结合动静分离和限流策略,提升性能与稳定性... 目录前言一、架构1. 原生多进程架构2. 事件驱动模型3. IO多路复用4. 异步非阻塞 I/O5. Nginx高并发配置实战二、动静分离1. 职责2

解决升级JDK报错:module java.base does not“opens java.lang.reflect“to unnamed module问题

《解决升级JDK报错:modulejava.basedoesnot“opensjava.lang.reflect“tounnamedmodule问题》SpringBoot启动错误源于Jav... 目录问题描述原因分析解决方案总结问题描述启动sprintboot时报以下错误原因分析编程异js常是由Ja

MySQL 表空却 ibd 文件过大的问题及解决方法

《MySQL表空却ibd文件过大的问题及解决方法》本文给大家介绍MySQL表空却ibd文件过大的问题及解决方法,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考... 目录一、问题背景:表空却 “吃满” 磁盘的怪事二、问题复现:一步步编程还原异常场景1. 准备测试源表与数据

解决Nginx启动报错Job for nginx.service failed because the control process exited with error code问题

《解决Nginx启动报错Jobfornginx.servicefailedbecausethecontrolprocessexitedwitherrorcode问题》Nginx启... 目录一、报错如下二、解决原因三、解决方式总结一、报错如下Job for nginx.service failed bec

SysMain服务可以关吗? 解决SysMain服务导致的高CPU使用率问题

《SysMain服务可以关吗?解决SysMain服务导致的高CPU使用率问题》SysMain服务是超级预读取,该服务会记录您打开应用程序的模式,并预先将它们加载到内存中以节省时间,但它可能占用大量... 在使用电脑的过程中,CPU使用率居高不下是许多用户都遇到过的问题,其中名为SysMain的服务往往是罪魁

MySQ中出现幻读问题的解决过程

《MySQ中出现幻读问题的解决过程》文章解析MySQLInnoDB通过MVCC与间隙锁机制在可重复读隔离级别下解决幻读,确保事务一致性,同时指出性能影响及乐观锁等替代方案,帮助开发者优化数据库应用... 目录一、幻读的准确定义与核心特征幻读 vs 不可重复读二、mysql隔离级别深度解析各隔离级别的实现差异

C++ vector越界问题的完整解决方案

《C++vector越界问题的完整解决方案》在C++开发中,std::vector作为最常用的动态数组容器,其便捷性与性能优势使其成为处理可变长度数据的首选,然而,数组越界访问始终是威胁程序稳定性的... 目录引言一、vector越界的底层原理与危害1.1 越界访问的本质原因1.2 越界访问的实际危害二、基

Python多线程应用中的卡死问题优化方案指南

《Python多线程应用中的卡死问题优化方案指南》在利用Python语言开发某查询软件时,遇到了点击搜索按钮后软件卡死的问题,本文将简单分析一下出现的原因以及对应的优化方案,希望对大家有所帮助... 目录问题描述优化方案1. 网络请求优化2. 多线程架构优化3. 全局异常处理4. 配置管理优化优化效果1.

Linux部署中的文件大小写问题的解决方案

《Linux部署中的文件大小写问题的解决方案》在本地开发环境(Windows/macOS)一切正常,但部署到Linux服务器后出现模块加载错误,核心原因是Linux文件系统严格区分大小写,所以本文给大... 目录问题背景解决方案配置要求问题背景在本地开发环境(Windows/MACOS)一切正常,但部署到