LeetCode 算法:K 个一组翻转链表 c++

2024-06-21 07:04

本文主要是介绍LeetCode 算法:K 个一组翻转链表 c++,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

原题链接🔗:K 个一组翻转链表
难度:困难⭐️⭐️⭐️

题目

给你链表的头节点 head ,每 k 个节点一组进行翻转,请你返回修改后的链表。

k 是一个正整数,它的值小于或等于链表的长度。如果节点总数不是 k 的整数倍,那么请将最后剩余的节点保持原有顺序。

你不能只是单纯的改变节点内部的值,而是需要实际进行节点交换。

示例 1
在这里插入图片描述

输入:head = [1,2,3,4,5], k = 2
输出:[2,1,4,3,5]

示例 2
在这里插入图片描述

输入:head = [1,2,3,4,5], k = 3
输出:[3,2,1,4,5]

提示

  • 链表中的节点数目为 n
  • 1 <= k <= n <= 5000
  • 0 <= Node.val <= 1000

进阶:你可以设计一个只用 O(1) 额外内存空间的算法解决此问题吗?

题解

迭代法

  1. 题解

"K 个一组翻转链表"是LeetCode上的一道中等难度的题目,其解题思路可以概括如下:

  1. 理解问题:题目要求将给定的链表按照每K个节点为一组进行翻转,如果最后一组不足K个节点,则不翻转。

  2. 使用哑节点:在链表的头部添加一个哑节点(dummy node),这样无论原链表的头节点如何变化,哑节点始终作为链表的起始点,简化了边界条件的处理。

  3. 遍历链表:从头节点开始遍历链表,找到每K个节点的边界。

  4. 翻转每组节点:对于每组找到的K个节点,进行翻转操作。翻转操作可以通过迭代或递归实现。

  5. 连接翻转后的节点:将翻转后的节点连接到前一组翻转后的节点后面,形成新的链表。

  6. 递归与迭代:递归方法简洁但可能存在栈溢出的风险,迭代方法更安全但代码相对复杂。

  7. 边界条件处理:处理链表长度不足K的情况,以及翻转后的链表连接。

下面详细说明迭代方法的步骤:

迭代方法

  1. 初始化:使用哑节点指向头节点,定义两个指针groupPrevcurr,分别指向当前组的前一个节点和当前处理的节点。

  2. 找到每K个节点:使用curr指针遍历链表,找到每K个节点的最后一位,可以通过一个循环实现。

  3. 翻转操作:在找到每K个节点后,使用三个指针(prevcurrentnext)来翻转这K个节点的连接。

  4. 连接翻转后的节点:将翻转后的节点连接到groupPrev后面。

  5. 更新指针:更新groupPrev为当前翻转组的最后一个节点,curr为下一个未翻转的节点的开始。

  6. 循环:重复步骤2-5,直到currnullptr,表示链表已经完全遍历。

  7. 返回结果:返回哑节点的下一个节点,即翻转后的链表的头节点。

递归方法

递归方法的核心是将问题分解为更小的子问题:

  1. 定义递归函数:递归函数接收当前节点和K值。

  2. 终止条件:如果当前节点为空或K为1,直接返回当前节点。

  3. 找到K个节点:使用辅助函数找到第K个节点。

  4. 翻转操作:翻转当前节点到第K个节点之间的链表。

  5. 递归调用:对第K个节点之后的链表进行递归调用。

  6. 连接翻转后的节点:将翻转后的子链表连接到翻转前的子链表。

  7. 返回结果:返回翻转后的链表。

递归方法的关键在于正确地翻转子链表,并确保递归调用能够正确地处理剩余的链表部分。递归方法的代码实现通常更简洁,但需要注意递归深度和性能问题。

  1. 复杂度:时间复杂度O(n),空间复杂度O(1)。
  2. c++ demo:直接应用LeetCode C++10-K个一组翻转链表中的demo。
#include <iostream>
#include <memory> //std::shared_ptr
#include <utility> // std::pairstruct Node {int value;Node* next;Node(int value) {this->value = value;next = nullptr; //这个千万别忘了,否则容易引发segment fault}
};Node* reverse(Node* head) {Node* pre = nullptr;Node* p = head;while (p) {auto next = p->next;p->next = pre;pre = p;p = next;}return pre;
}// 翻转[head, tail]的元素
std::pair<Node*, Node*> reverse(Node* head, Node* tail) {if (head == nullptr || tail == nullptr) {return {};}Node* pre = nullptr;Node* p = head;// 特别注意:// 这里容易错写成while(p != tail->next),显然是错误的.// 原因是tail对应的元素翻转后,tail->next不再指向原来的next,而是指向翻转后的next// 除非提前将tail->next在循环外保存,例如:// Node* tail_next = tail->next;// while (p != tail_next) {...}while (pre != tail) { // 这里容易错写成p != tail->nextNode* next = p->next;p->next = pre;pre = p;p = next;}return { tail, head };
}Node* reverse_k(Node* head, int k) {std::shared_ptr<Node> dummy_node(new Node(-1));dummy_node->next = head;Node* pre = dummy_node.get();Node* phead = head;Node* ptail = pre;//从真正头节点前一个位置出发while (phead) {for (int i = 0; i < k; i++) {ptail = ptail->next;if (ptail == nullptr) { //长度不够k则直接返回return dummy_node->next;}}Node* next = ptail->next;//先保存tail的下一个位置,防止断链auto reverse_ret = reverse(phead, ptail);//翻转[phead, ptail]区间phead = reverse_ret.first;ptail = reverse_ret.second;// 更新连接pre->next = phead;ptail->next = next;// 指针向前移动pre = ptail;phead = next;}return dummy_node->next;
}void print_list(Node* head) {Node* p = head;while (p) {std::cout << p->value << "->";p = p->next;}std::cout << "nullptr" << std::endl;;
}int main()
{// case1: 1->2->3->4->5, k=2 ==> 2->1->4->3->5Node n1(1), n2(2), n3(3), n4(4), n5(5);n1.next = &n2;n2.next = &n3;n3.next = &n4;n4.next = &n5;Node* head = &n1;print_list(head);head = reverse_k(head, 2);std::cout << "case1, k=2:" << std::endl;print_list(head);// case2: 1->2->3->4->5, k=3 ==> 3->2->1->4->5n1.next = &n2;n2.next = &n3;n3.next = &n4;n4.next = &n5;head = &n1;head = reverse_k(head, 3);std::cout << "case2, k=3:" << std::endl;print_list(head);// case3: 1->2->3->4->5, k=1 ==> 1->2->3->4->5n1.next = &n2;n2.next = &n3;n3.next = &n4;n4.next = &n5;head = &n1;head = reverse_k(head, 1);std::cout << "case3, k=1:" << std::endl;print_list(head);// case4: 1, k = 1 n1.next = nullptr;head = &n1;head = reverse_k(head, 1);std::cout << "case3, list is 1->nullptr, k=1:" << std::endl;print_list(head);return 0;
}
  • 输出结果:

1->2->3->4->5->nullptr
case1, k=2:
2->1->4->3->5->nullptr
case2, k=3:
3->2->1->4->5->nullptr
case3, k=1:
1->2->3->4->5->nullptr
case3, list is 1->nullptr, k=1:
1->nullptr
在这里插入图片描述

这篇关于LeetCode 算法:K 个一组翻转链表 c++的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!


原文地址:
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.chinasem.cn/article/1080527

相关文章

C/C++ chrono简单使用场景示例详解

《C/C++chrono简单使用场景示例详解》:本文主要介绍C/C++chrono简单使用场景示例详解,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友... 目录chrono使用场景举例1 输出格式化字符串chrono使用场景China编程举例1 输出格式化字符串示

C++/类与对象/默认成员函数@构造函数的用法

《C++/类与对象/默认成员函数@构造函数的用法》:本文主要介绍C++/类与对象/默认成员函数@构造函数的用法,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录名词概念默认成员函数构造函数概念函数特征显示构造函数隐式构造函数总结名词概念默认构造函数:不用传参就可以

C++类和对象之默认成员函数的使用解读

《C++类和对象之默认成员函数的使用解读》:本文主要介绍C++类和对象之默认成员函数的使用方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、默认成员函数有哪些二、各默认成员函数详解默认构造函数析构函数拷贝构造函数拷贝赋值运算符三、默认成员函数的注意事项总结一

C/C++中OpenCV 矩阵运算的实现

《C/C++中OpenCV矩阵运算的实现》本文主要介绍了C/C++中OpenCV矩阵运算的实现,包括基本算术运算(标量与矩阵)、矩阵乘法、转置、逆矩阵、行列式、迹、范数等操作,感兴趣的可以了解一下... 目录矩阵的创建与初始化创建矩阵访问矩阵元素基本的算术运算 ➕➖✖️➗矩阵与标量运算矩阵与矩阵运算 (逐元

C/C++的OpenCV 进行图像梯度提取的几种实现

《C/C++的OpenCV进行图像梯度提取的几种实现》本文主要介绍了C/C++的OpenCV进行图像梯度提取的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的... 目录预www.chinasem.cn备知识1. 图像加载与预处理2. Sobel 算子计算 X 和 Y

C/C++和OpenCV实现调用摄像头

《C/C++和OpenCV实现调用摄像头》本文主要介绍了C/C++和OpenCV实现调用摄像头,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一... 目录准备工作1. 打开摄像头2. 读取视频帧3. 显示视频帧4. 释放资源5. 获取和设置摄像头属性

c/c++的opencv图像金字塔缩放实现

《c/c++的opencv图像金字塔缩放实现》本文主要介绍了c/c++的opencv图像金字塔缩放实现,通过对原始图像进行连续的下采样或上采样操作,生成一系列不同分辨率的图像,具有一定的参考价值,感兴... 目录图像金字塔简介图像下采样 (cv::pyrDown)图像上采样 (cv::pyrUp)C++ O

c/c++的opencv实现图片膨胀

《c/c++的opencv实现图片膨胀》图像膨胀是形态学操作,通过结构元素扩张亮区填充孔洞、连接断开部分、加粗物体,OpenCV的cv::dilate函数实现该操作,本文就来介绍一下opencv图片... 目录什么是图像膨胀?结构元素 (KerChina编程nel)OpenCV 中的 cv::dilate() 函

C++ RabbitMq消息队列组件详解

《C++RabbitMq消息队列组件详解》:本文主要介绍C++RabbitMq消息队列组件的相关知识,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录1. RabbitMq介绍2. 安装RabbitMQ3. 安装 RabbitMQ 的 C++客户端库4. A

C++ HTTP框架推荐(特点及优势)

《C++HTTP框架推荐(特点及优势)》:本文主要介绍C++HTTP框架推荐的相关资料,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录1. Crow2. Drogon3. Pistache4. cpp-httplib5. Beast (Boos