推荐系统三十六式学习笔记:原理篇.矩阵分解12|如果关注排序效果,那么这个模型可以帮到你

本文主要是介绍推荐系统三十六式学习笔记:原理篇.矩阵分解12|如果关注排序效果,那么这个模型可以帮到你,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

  • 矩阵分解的不足
  • 贝叶斯个性化排序
    • AUC
    • 构造样本
    • 目标函数
    • 训练方法
  • 总结

矩阵分解在推荐系统中的地位非常崇高。它既有协同过滤的血统,又有机器学习的基因,可以说是非常优秀了;但即便如此,传统的矩阵分解无论是在处理显式反馈,还是 处理隐式反馈都让人颇有微词,这一点是为什么呢?

矩阵分解的不足

前面讲过的两种矩阵分解,本质都是在预测用户对一个物品的偏好程度,哪怕不是预测评分,只是预测隐式反馈,也是这个事实。
得到矩阵分解结果后,常常在实际使用时,又是用这个预测结果来排序。原来的目标是让模型的预测误差最小化,到最后还是只想要一个好点的排序。

这种针对单个用户对单个物品的偏好程度进行预测,得到结果后再排序的问题,在排序学习中的叫做:point-wise,其中point意思就是:只单独考虑每个物品,每个物品 像是空间中孤立的点一样。与之相对应的,还有直接预测物品两两之间相对排序的问题,叫做pair-wise ,pair顾名思义就是成对成双。

前面将的矩阵分解都属于point-wise模型。这类模型的尴尬是:只能收集到正样本,没有负样本,于是认为缺失值就是负样本,再以预测误差为评判标准去逼近这些样本。逼近正样本没有问题,但同时逼近的负样本只是缺失值而已,并不能确认用户到底是不喜欢还是喜欢。虽然这些模型采取了一些措施来规避这个问题,比如负样本采样,但尴尬还是存在的,为了排序而绕路也是事实。

既然如此,能不能直面问题,采用pair-wise 来看待矩阵分解呢?当然可以。实际上,更直接的推荐模型应该是:能够较好地为用户排列出更好的物品相对顺序,而非更精确的评分。

这个问题已经有专业的从业者们提出了方法:贝叶斯个性化排序,简称BPR模型。下面,我们就一探究竟。

贝叶斯个性化排序

在前面的专栏文章中,已提到均方根误差,用于评价模型预测准确度的。现在要关注的是相对排序,用什么指标比较好呢?AUC,全称是Area Under Curve,意思是曲面下的面积,这里的曲线是ROC曲线。

AUC

AUC 这个值在数学上等价于:模型把关心的那一类样本排在其他样本前面的概率。最大是1,完美结果,而0.5是书籍排列,0就是完美的全部排错。

这个非常适合来评价模型的排序效果,比如说,得到一个推荐模型后,按照它计算的分数,能不能把用户真正想消费的物品排在前面。这个模型上线前是可以用日志完全计算出来的。

AUC 怎么计算呢?一般步骤如下:
1、用模型给样本计算推荐分,比如样本都是用户和物品这样一对一对的,同时还包含了有无反馈的标识;
2、得到打过分的样本,每条样本保留两个信息,第一个是分数,第二个是0或者1,1标识消费过,是正样本,0标识没有,负样本;
3、按照分数对样本重新排序,降序排列;
4、给每一个样本赋一个排序值,第一位r1=n,第二位r2=n-1,以此类推;其中要注意,如果几个样本分数一样,需要将其排序值调整为他们的平均值;
5、最终按照下面的这个公式计算就可以得到AUC值;

A U C = ∑ i ∈ ( 样 本 ) T i − M ∗ ( M + 1 ) 2 M ∗ N AUC =\frac{\sum_{i∈(样本)}{T_i-\frac{M*(M +1)}{2}}}{M*N} AUC=MNi()Ti2M(M+1)

这个公式:
第一部分:分母是我们关心的那类样本,也就是正样本,有M个,以及其他的样本有N个,这两类样本相对排序总共的可能性有M*N种;
第二部分:分子是这样计算的:第一名的排序值是r_1,它在排序上不但比过了所有的负样本,而且比过了自己以外的正样本。
正样本和正样本是同一类,所以要排查,于是就有N-M 种组合,以此类推,排序值为rm的就贡献了rm-1,把这些加起来就是分子;

关于AUC,越接近1越好是肯定的,但是并不是越接近0就越差,最差的是接近0.5,如果AUC很接近0的话,只需要把模型预测的结果加个负号就能让AUC接近1;

BPR模型,它提出了一个优化准则和学习框架,那到底BPR做了什么事情呢?主要有三点:
1.一个样本构造方法;
2.一个模型目标函数;
3.一个模型学习框架;

构造样本

前面介绍的矩阵分解,在训练时候处理的样本是:用户、物品、反馈,这样的三元组形式;

其中反馈又包含真实反馈和缺失值,缺失值充当负样本。BPR则不同,提出要关心的是物品之间对于用户的相对排序,于是构造的样本是:用户、物品1、物品2、两个物品相对排序,这样的四元组形式,其中两个物品的相对排序,取值是:

1、如果物品1是消费过的,而物品2不是,那么相对顺序取值为1,是正样本;
2、如果物品1和物品2刚好相反,则是负样本;
3、样本中不包含其他情况:物品1和物品2都是消费过的,或者都是没消费过的。

学习的顺序是反应用户偏好的相对顺序,而在使用时,面对的是所有用户还没消费过的物品,这些物品仍然可以在这样的模型下取得相对顺序,这就比三元组point-wise 样本要直观得多。

目标函数

现在,每条样本包含的是两个物品,样本预测目标是两个物品的相对排序。BPR完成矩阵分解,依然需要像交替最小二乘那样的思想。

先假设矩阵分解结果已经有了,于是计算出用户对于每个物品的推荐分数,只不过这个推荐分数可能并不满足均方根误差最小,而是满足物品相对排序最佳。

得到了用户和物品的推荐分数后,就可以计算四元组的样本中,物品1和物品2的分数差,这个分数可能是正数,也可能是负数,还可能是0;

希望的情况是:如果物品1和物品2相对排序为1,那么希望两者分数之差是个正数,而且越大越好;如果物品1和物品2的相对排序时0,则希望分数之差是负数,且越小越好;

用个符号来表示这个差: X u 12 X_{u12} Xu12,表示的是对于用户u,物品1和物品2的矩阵分解预测分数差。然后再用sigmoid函数把这个分数差压缩到0到1之间。
θ = 1 1 + e ( − X u 12 ) θ=\frac{1}{1+e^{(-X_{u12})}} θ=1+e(Xu12)1

用这种方式预测了物品1排在物品2前面的似然概率,所以最大化交叉熵就是目标函数了。目标函数通常还要防止过拟合,加上正则项,正则项其实认为模型参数有个先验概率,这也是BPR这个名字中有’贝叶斯’的来历。BPR认为模型的先验概率符合正态分布,对应到正则化就是说L2正则。

所有样本都计算:模型参数先验概率p theta ,和似然概率的乘积,最大化这个目标函数就能够得到分解后的矩阵参数其中theta就是分解后的矩阵参数。

这个目标函数化简和变形后,和把AUC当成目标函数是非常相似的,正因为如此,BPR模型宣称该模型是为AUC而生。

训练方法

有了目标函数之后,就要有训练方法。梯度下降可以,梯度下降又分为批量梯度和随机梯度两个选择,前者收敛慢,后者训练快但不稳定。
因此BPR使用了一个介于两者之间的训练方法,结合重复抽样的梯度下降。具体如下:

1、从全量样本中有放回地随机抽取一部分样本;
2、用这部分样本,采用随机梯度下降优化目标函数,更新模型参数;
3、重复步骤1,直到满足停止条件。

这样,就得到了一个更符合推荐排序要求的矩阵分解模型了;

总结

今天是矩阵分解三篇的最后一篇,传统的矩阵分解,无论是隐式反馈还是显示反馈,都是希望更加准确地预测用户对单个物品的偏好,而实际上,如果能够预测用户对物品之间的相对偏好,则更加符合实际需求的直觉。

BPR就是这样一整套针对排序的推荐算法,它事实上提出了一个优化准则和一个学习框架,至于其中优化的对象是不是矩阵分解并不是它的重点。但我在这里结合矩阵分解对其进行了讲解,同时还介绍了排序时最常用的评价指标AUC及其计算方法。

在这里插入图片描述

这篇关于推荐系统三十六式学习笔记:原理篇.矩阵分解12|如果关注排序效果,那么这个模型可以帮到你的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1079374

相关文章

通过React实现页面的无限滚动效果

《通过React实现页面的无限滚动效果》今天我们来聊聊无限滚动这个现代Web开发中不可或缺的技术,无论你是刷微博、逛知乎还是看脚本,无限滚动都已经渗透到我们日常的浏览体验中,那么,如何优雅地实现它呢?... 目录1. 早期的解决方案2. 交叉观察者:IntersectionObserver2.1 Inter

linux系统中java的cacerts的优先级详解

《linux系统中java的cacerts的优先级详解》文章讲解了Java信任库(cacerts)的优先级与管理方式,指出JDK自带的cacerts默认优先级更高,系统级cacerts需手动同步或显式... 目录Java 默认使用哪个?如何检查当前使用的信任库?简要了解Java的信任库总结了解 Java 信

macOS彻底卸载Python的超完整指南(推荐!)

《macOS彻底卸载Python的超完整指南(推荐!)》随着python解释器的不断更新升级和项目开发需要,有时候会需要升级或者降级系统中的python的版本,系统中留存的Pytho版本如果没有卸载干... 目录MACOS 彻底卸载 python 的完整指南重要警告卸载前检查卸载方法(按安装方式)1. 卸载

Linux五种IO模型的使用解读

《Linux五种IO模型的使用解读》文章系统解析了Linux的五种IO模型(阻塞、非阻塞、IO复用、信号驱动、异步),重点区分同步与异步IO的本质差异,强调同步由用户发起,异步由内核触发,通过对比各模... 目录1.IO模型简介2.五种IO模型2.1 IO模型分析方法2.2 阻塞IO2.3 非阻塞IO2.4

Oracle数据库在windows系统上重启步骤

《Oracle数据库在windows系统上重启步骤》有时候在服务中重启了oracle之后,数据库并不能正常访问,下面:本文主要介绍Oracle数据库在windows系统上重启的相关资料,文中通过代... oracle数据库在Windows上重启的方法我这里是使用oracle自带的sqlplus工具实现的方

JWT + 拦截器实现无状态登录系统

《JWT+拦截器实现无状态登录系统》JWT(JSONWebToken)提供了一种无状态的解决方案:用户登录后,服务器返回一个Token,后续请求携带该Token即可完成身份验证,无需服务器存储会话... 目录✅ 引言 一、JWT 是什么? 二、技术选型 三、项目结构 四、核心代码实现4.1 添加依赖(pom

基于Python实现自动化邮件发送系统的完整指南

《基于Python实现自动化邮件发送系统的完整指南》在现代软件开发和自动化流程中,邮件通知是一个常见且实用的功能,无论是用于发送报告、告警信息还是用户提醒,通过Python实现自动化的邮件发送功能都能... 目录一、前言:二、项目概述三、配置文件 `.env` 解析四、代码结构解析1. 导入模块2. 加载环

linux系统上安装JDK8全过程

《linux系统上安装JDK8全过程》文章介绍安装JDK的必要性及Linux下JDK8的安装步骤,包括卸载旧版本、下载解压、配置环境变量等,强调开发需JDK,运行可选JRE,现JDK已集成JRE... 目录为什么要安装jdk?1.查看linux系统是否有自带的jdk:2.下载jdk压缩包2.解压3.配置环境

Unity新手入门学习殿堂级知识详细讲解(图文)

《Unity新手入门学习殿堂级知识详细讲解(图文)》Unity是一款跨平台游戏引擎,支持2D/3D及VR/AR开发,核心功能模块包括图形、音频、物理等,通过可视化编辑器与脚本扩展实现开发,项目结构含A... 目录入门概述什么是 UnityUnity引擎基础认知编辑器核心操作Unity 编辑器项目模式分类工程

Python学习笔记之getattr和hasattr用法示例详解

《Python学习笔记之getattr和hasattr用法示例详解》在Python中,hasattr()、getattr()和setattr()是一组内置函数,用于对对象的属性进行操作和查询,这篇文章... 目录1.getattr用法详解1.1 基本作用1.2 示例1.3 原理2.hasattr用法详解2.