使用MapReduce实现Bayes算法

2024-06-20 18:18

本文主要是介绍使用MapReduce实现Bayes算法,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

代码如下:

NBayes.conf

4 cl1 cl2 cl3 cl4
3 p1 12 p2 16 p3 17

NBayes.train

cl1 5 6 7
cl2 3 8 4
cl1 2 5 2
cl3 7 8 7
cl4 3 8 2
cl4 9 2 7
cl2 1 8 5
cl5 2 9 4
cl3 10 3 4
cl1 4 5 6
cl3 4 6 7

NBayes.test

1 5 6 7
2 1 8 5
3 2 9 4
4 10 3 4
5 4 5 6
6 3 8 4
7 2 5 2
8 7 8 7
9 3 8 2
10 9 2 7
11 4 6 7

package naivebayes;


import java.util.ArrayList;


public class NaiveBayesConf {
public int dimen;
public int class_num;
public ArrayList<String> classNames;
public ArrayList<String> proNames;
public ArrayList<Integer> proRanges;


public NaiveBayesConf() {
dimen = class_num = 0;
classNames = new ArrayList<String>();
proNames = new ArrayList<String>();
proRanges = new ArrayList<Integer>();
}


public void ReadNaiveBayesConf(String file, Configuration conf)
throws Exception {
Path conf_path = new Path(file);
FileSystem hdfs = conf_path.getFileSystem(conf);
FSDataInputStream fsdt = hdfs.open(conf_path);
Scanner scan = new Scanner(fsdt);
String str = scan.nextLine();
String[] vals = str.split(" ");


class_num = Integer.parseInt(vals[0]);


int i;


for (i = 1; i < vals.length; i++) {
classNames.add(vals[i]);
}


str = scan.nextLine();
vals = str.split(" ");
dimen = Integer.parseInt(vals[0]);


for (i = 1; i < vals.length; i += 2) {
proNames.add(vals[i]);
proRanges.add(new Integer(vals[i + 1]));
}
fsdt.close();
scan.close();
}
}

package naivebayes;


import org.apache.hadoop.conf.Configuration;


public class NaiveBayesMain {
public static void main(String[] args) throws Exception {
Configuration conf = new Configuration();
String[] otherArgs = new GenericOptionsParser(conf, args)
.getRemainingArgs();
FileSystem fs = FileSystem.get(conf);
Path path_train, path_temp, path_test, path_out;
if (otherArgs.length != 5) {
System.err
.println("Usage: NaiveBayesMain <dfs_path> <conf> <train> <test> <out>");
System.exit(2);
}


conf.set("conf", otherArgs[0] + "/" + otherArgs[1]);
conf.set("train", otherArgs[0] + "/" + otherArgs[2]);
conf.set("test", otherArgs[0] + "/" + otherArgs[3]);
conf.set("output", otherArgs[0] + "/" + otherArgs[4]);


put2HDFS(otherArgs[1], otherArgs[0] + "/" + otherArgs[1], conf);
put2HDFS(otherArgs[2], otherArgs[0] + "/" + otherArgs[2], conf);
put2HDFS(otherArgs[3], otherArgs[0] + "/" + otherArgs[3], conf);


path_train = new Path(otherArgs[0] + "/" + otherArgs[2]);
path_temp = new Path(otherArgs[0] + "/" + otherArgs[2] + ".train1");
path_test = new Path(otherArgs[0] + "/" + otherArgs[3]);
path_out = new Path(otherArgs[0] + "/" + otherArgs[4]);


{
Job job_train = new Job(conf, "naive bayse training");
job_train.setJarByClass(NaiveBayesMain.class);
job_train.setMapperClass(NaiveBayesTrain.TrainMapper.class);
job_train.setCombinerClass(NaiveBayesTrain.TrainReducer.class);
job_train.setReducerClass(NaiveBayesTrain.TrainReducer.class);
job_train.setOutputKeyClass(Text.class);
job_train.setOutputValueClass(IntWritable.class);


FileInputFormat.setInputPaths(job_train, path_train);
if (fs.exists(path_temp))
fs.delete(path_temp, true);
FileOutputFormat.setOutputPath(job_train, path_temp);
if (job_train.waitForCompletion(true) == false)
System.exit(1);


conf.set("train_result", otherArgs[0] + "/" + otherArgs[2]
+ ".train1");
}
{
Job job_test = new Job(conf, "naive bayse testing");
job_test.setJarByClass(NaiveBayesTest.class);
job_test.setMapperClass(NaiveBayesTest.TestMapper.class);
job_test.setOutputKeyClass(Text.class);
job_test.setOutputValueClass(Text.class);


FileInputFormat.setInputPaths(job_test, path_test);
if (fs.exists(path_out))
fs.delete(path_out, true);
FileOutputFormat.setOutputPath(job_test, path_out);
if (job_test.waitForCompletion(true) == false)
System.exit(1);
fs.delete(path_temp, true);
}


// getFromHDFS(otherArgs[0] + "/" + otherArgs[4], ".", conf);


fs.close();
System.exit(0);
}


public static void put2HDFS(String src, String dst, Configuration conf)
throws Exception {
Path dstPath = new Path(dst);
FileSystem hdfs = dstPath.getFileSystem(conf);


hdfs.copyFromLocalFile(false, true, new Path(src), new Path(dst));


}


public static void getFromHDFS(String src, String dst, Configuration conf)
throws Exception {
Path dstPath = new Path(dst);
FileSystem lfs = dstPath.getFileSystem(conf);
String temp[] = src.split("/");
Path ptemp = new Path(temp[temp.length - 1]);
if (lfs.exists(ptemp))
;
lfs.delete(ptemp, true);
lfs.copyToLocalFile(true, new Path(src), dstPath);


}
}

package naivebayes;


import java.util.Scanner;


public class NaiveBayesTrain {
public static class TrainMapper extends
Mapper<Object, Text, Text, IntWritable> {
public NaiveBayesConf nBConf;
private final static IntWritable one = new IntWritable(1);
private Text word;


public void setup(Context context) {
try {
nBConf = new NaiveBayesConf();
Configuration conf = context.getConfiguration();
nBConf.ReadNaiveBayesConf(conf.get("conf"), conf);
} catch (Exception ex) {
ex.printStackTrace();
System.exit(1);
}
System.out.println("setup");
}


public void map(Object key, Text value, Context context)
throws IOException, InterruptedException {
Scanner scan = new Scanner(value.toString());
String str, vals[], temp;
int i;
word = new Text();
while (scan.hasNextLine()) {
str = scan.nextLine();
vals = str.split(" ");
word.set(vals[0]);
context.write(word, one);
for (i = 1; i < vals.length; i++) {
word = new Text();
temp = vals[0] + "#" + nBConf.proNames.get(i - 1);
temp += "#" + vals[i];
word.set(temp);
context.write(word, one);
}
}
}
}


public static class TrainReducer extends
Reducer<Text, IntWritable, Text, IntWritable> {
private IntWritable result = new IntWritable();


public void reduce(Text key, Iterable<IntWritable> values,
Context context) throws IOException, InterruptedException {
int sum = 0;
for (IntWritable val : values) {
sum += val.get();
}
result.set(sum);
context.write(key, result);
}
}
}


package naivebayes;


import java.io.BufferedReader;


public class NaiveBayesTrainData {
public HashMap<String, Integer> freq;


public NaiveBayesTrainData() {
freq = new HashMap<String, Integer>();
}


public void getData(String file, Configuration conf) throws IOException {
int i;
Path data_path = new Path(file);
Path file_path;
String temp[], line;
FileSystem hdfs = data_path.getFileSystem(conf);
FileStatus[] status = hdfs.listStatus(data_path);


for (i = 0; i < status.length; i++) {
file_path = status[i].getPath();
if (hdfs.getFileStatus(file_path).isDir() == true)
continue;
line = file_path.toString();
temp = line.split("/");
if (temp[temp.length - 1].substring(0, 5).equals("part-") == false)
continue;
System.err.println(line);
FSDataInputStream fin = hdfs.open(file_path);
InputStreamReader inr = new InputStreamReader(fin);
BufferedReader bfr = new BufferedReader(inr);
while ((line = bfr.readLine()) != null) {
String res[] = line.split("\t");
freq.put(res[0], new Integer(res[1]));
System.out.println(line);
}
bfr.close();
inr.close();
fin.close();
}
}


}


package naivebayes;


import java.util.Scanner;


public class NaiveBayesTest {
public static class TestMapper extends Mapper<Object, Text, Text, Text> {
public NaiveBayesConf nBConf;
public NaiveBayesTrainData nBTData;


public void setup(Context context) {
try {
Configuration conf = context.getConfiguration();


nBConf = new NaiveBayesConf();
nBConf.ReadNaiveBayesConf(conf.get("conf"), conf);
nBTData = new NaiveBayesTrainData();
nBTData.getData(conf.get("train_result"), conf);
} catch (Exception ex) {
ex.printStackTrace();
System.exit(1);
}
}


public void map(Object key, Text value, Context context)
throws IOException, InterruptedException {
Scanner scan = new Scanner(value.toString());
String str, vals[], temp;
int i, j, k, fxyi, fyi, fyij, maxf, idx;
Text id;
Text cls;


while (scan.hasNextLine()) {
str = scan.nextLine();
vals = str.split(" ");
maxf = -100;
idx = -1;
for (i = 0; i < nBConf.class_num; i++) {
fxyi = 1;
String cl = nBConf.classNames.get(i);
Integer integer = nBTData.freq.get(cl);
if (integer == null)
fyi = 0;
else
fyi = integer.intValue();
for (j = 1; j < vals.length; j++) {
temp = cl + "#" + nBConf.proNames.get(j - 1) + "#"
+ vals[j];


integer = nBTData.freq.get(temp);
if (integer == null)
fyij = 0;
else
fyij = integer.intValue();
fxyi = fxyi * fyij;
}
if (fyi * fxyi > maxf) {
maxf = fyi * fxyi;
idx = i;
}
}
id = new Text(vals[0]);
cls = new Text(nBConf.classNames.get(idx));
context.write(id, cls);
}
}
}
}

这篇关于使用MapReduce实现Bayes算法的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1078892

相关文章

mybatis执行insert返回id实现详解

《mybatis执行insert返回id实现详解》MyBatis插入操作默认返回受影响行数,需通过useGeneratedKeys+keyProperty或selectKey获取主键ID,确保主键为自... 目录 两种方式获取自增 ID:1. ​​useGeneratedKeys+keyProperty(推

Spring Boot集成Druid实现数据源管理与监控的详细步骤

《SpringBoot集成Druid实现数据源管理与监控的详细步骤》本文介绍如何在SpringBoot项目中集成Druid数据库连接池,包括环境搭建、Maven依赖配置、SpringBoot配置文件... 目录1. 引言1.1 环境准备1.2 Druid介绍2. 配置Druid连接池3. 查看Druid监控

Python通用唯一标识符模块uuid使用案例详解

《Python通用唯一标识符模块uuid使用案例详解》Pythonuuid模块用于生成128位全局唯一标识符,支持UUID1-5版本,适用于分布式系统、数据库主键等场景,需注意隐私、碰撞概率及存储优... 目录简介核心功能1. UUID版本2. UUID属性3. 命名空间使用场景1. 生成唯一标识符2. 数

Linux在线解压jar包的实现方式

《Linux在线解压jar包的实现方式》:本文主要介绍Linux在线解压jar包的实现方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录linux在线解压jar包解压 jar包的步骤总结Linux在线解压jar包在 Centos 中解压 jar 包可以使用 u

SpringBoot中如何使用Assert进行断言校验

《SpringBoot中如何使用Assert进行断言校验》Java提供了内置的assert机制,而Spring框架也提供了更强大的Assert工具类来帮助开发者进行参数校验和状态检查,下... 目录前言一、Java 原生assert简介1.1 使用方式1.2 示例代码1.3 优缺点分析二、Spring Fr

Android kotlin中 Channel 和 Flow 的区别和选择使用场景分析

《Androidkotlin中Channel和Flow的区别和选择使用场景分析》Kotlin协程中,Flow是冷数据流,按需触发,适合响应式数据处理;Channel是热数据流,持续发送,支持... 目录一、基本概念界定FlowChannel二、核心特性对比数据生产触发条件生产与消费的关系背压处理机制生命周期

java使用protobuf-maven-plugin的插件编译proto文件详解

《java使用protobuf-maven-plugin的插件编译proto文件详解》:本文主要介绍java使用protobuf-maven-plugin的插件编译proto文件,具有很好的参考价... 目录protobuf文件作为数据传输和存储的协议主要介绍在Java使用maven编译proto文件的插件

c++ 类成员变量默认初始值的实现

《c++类成员变量默认初始值的实现》本文主要介绍了c++类成员变量默认初始值,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 目录C++类成员变量初始化c++类的变量的初始化在C++中,如果使用类成员变量时未给定其初始值,那么它将被

SpringBoot线程池配置使用示例详解

《SpringBoot线程池配置使用示例详解》SpringBoot集成@Async注解,支持线程池参数配置(核心数、队列容量、拒绝策略等)及生命周期管理,结合监控与任务装饰器,提升异步处理效率与系统... 目录一、核心特性二、添加依赖三、参数详解四、配置线程池五、应用实践代码说明拒绝策略(Rejected

C++ Log4cpp跨平台日志库的使用小结

《C++Log4cpp跨平台日志库的使用小结》Log4cpp是c++类库,本文详细介绍了C++日志库log4cpp的使用方法,及设置日志输出格式和优先级,具有一定的参考价值,感兴趣的可以了解一下... 目录一、介绍1. log4cpp的日志方式2.设置日志输出的格式3. 设置日志的输出优先级二、Window