现代谱估计分析信号的功率谱(1)---AR 模型谱估计

2024-06-20 02:28

本文主要是介绍现代谱估计分析信号的功率谱(1)---AR 模型谱估计,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

         本篇文章是博主在通信等领域学习时,用于个人学习、研究或者欣赏使用,并基于博主对通信等领域的一些理解而记录的学习摘录和笔记,若有不当和侵权之处,指出后将会立即改正,还望谅解。文章分类在通信领域笔记

          通信领域笔记(5)---《现代谱估计分析信号的功率谱(1)---AR 模型谱估计》

现代谱估计分析信号的功率谱(1)---AR 模型谱估计

目录

1 背景分析

1.1 设计要求

2 理论分析推导

2.1 AR 模型谱估计原理

2.2 AR 模型谱估计步骤

3 MATLAB 仿真

3.1 AR 模型谱估计

3.1.1 AR 模型自相关法功率谱估计

3.1.2 AR 模型协方差法功率谱估计

3.1.3 AR 模型与经典谱估计对比


1 背景分析

        现代谱估计是一种用于分析信号的功率谱的技术。与传统的基于傅里叶变换 的经典谱估计方法相比,现代谱估计具有更高的分辨率和更准确的频率估计能力。传统谱估计方法主要基于傅里叶变换,将信号从时域转换到频域,然后计算各个频率成分的功率。但是,傅里叶变换对于非周期信号和有限长度的信号存在分辨率限制,即无法准确区分频率相近的成分。此外,傅里叶变换还受到窗函数选择和泄漏效应的影响,可能导致谱估计的偏差。

        现代谱估计方法通过利用信号的自相关函数或协方差函数等统计特性,以及先进的数学工具和算法,提高了谱估计的分辨率和准确性。其中一些常见的方法包括自回归模型(AR模型)、最大熵谱估计(MESP)、最小方差无偏估计(MVUE)等。这些方法利用了信号中的统计信息,可以更好地分辨频率相近的成分,并减小窗函数选择和泄漏效应的影响。

        现代谱估计方法的发展受益于信号处理、统计学和计算机科学等多个领域的进步。随着技术的不断发展,现代谱估计方法将在更多领域得到应用,并为信号处理和数据分析提供更准确、更有效的工具。

        本次实验主要验证在时间序列分析中,AR 模型(自回归模型)和皮萨伦科(Pisarenko)分析方法的相关问题。

皮萨伦科(Pisarenko)分析方法见通信领域笔记专栏:

        《现代谱估计分析信号的功率谱(2)---Pisarenko 谐波分解法》

1.1 设计要求

        通过 MATLAB 软件产生如下信号:

        𝑥(𝑛) = 2 cos(2𝜋𝑓1𝑛) + 2 cos(2𝜋𝑓2𝑛) 2 cos(2𝜋𝑓3𝑛) + 𝑣(𝑛)

        其中𝑓1 = 0.05、𝑓2 = 0.40、𝑓3 = 0.42,𝑣(𝑛)是实高斯白噪声(信噪比由 5dB -10dB,步进 5dB),𝑓1-𝑓3均为归一化的频率。

        1)使用 AR 模型对信号进行功率谱估计,模型参数计算分别使用自相关法,协方差法。而后与经典谱估计进行对比分析,并且验证模型阶数变化时带来的影响。

        2)使用皮萨伦科(Pisarenko)分析信号成分。


2 理论分析推导

        信号建模谱估计是现代谱估计的重要方法,其中 AR 模型功率谱估计是最 常用的一种方法,这是因为 AR 模型参数的精确估计可以用解一组线性方程的方法求得,而对于 MA ARMA 模型功率谱估计来说,其参数的精确估计需要解一组高阶的非线性方程。所以实验的现代谱估计内容以 AR 模型谱估计为主来进行实验分析和验证。

2.1 AR 模型谱估计原理

2.2 AR 模型谱估计步骤


3 MATLAB 仿真

3.1 AR 模型谱估计

        首先采用归一化载波频率,设置采样点数为,生成三个不同频率的余弦信号,最后使用 awgn 函数加入高斯白噪声,生成信号𝑥𝑛

N=200;%采样点数
Fs = 1000;  %采样频率
fc1 = 0.05*Fs; % 归一化载波频率转化为载波频率
fc2 = 0.40*Fs;
fc3 = 0.42*Fs;
n = 0:1/Fs:(N-1)/Fs;xn = 2*cos(2*pi*fc1*n) + 2*cos(2*pi*fc2*n) + 2*cos(2*pi*fc3*n);
xn = awgn(xn,5);  %加入高斯白噪声信号
nfft = N;
p=30;   %AR模型阶数
q=30;   %MA模型参数

3.1.1 AR 模型自相关法功率谱估计

        直接调用 Matlab 中的 pyulear 函数估计功率谱,设置高斯白噪声信噪比 SNR 为 5

%%自相关法求AR模型参数
[Pxx1,F1]=pyulear(xn,p,N,Fs);%直接调用matlab中的pyulear函数估计功率谱
Pxx1=10*log10(Pxx1);
figure(1);
plot(F1,Pxx1);
title('AR模型自相关法');

        分别观察在不同的阶下,自相关法求解 AR 模型功率谱参数,阶次的选取以 步进 8102030 为选择,分别得到了 AR 模型在 2 阶、10 阶、20 阶、30 阶、60 阶、80 阶、110 阶、130 阶的情况下得到的功率谱参数情况。

        从图中可以看到,在阶次不断增加的情况下,归一化频率 0.40.42 的区分度由不清晰到区分度越来越清晰,但随着阶次的增高,尤其是在 80 阶以后,尽管分辨率比较高,但出现的虚假谱峰也越来越多。我们知道,一个经验法则是:AR 模型阶次应该选择在 𝑁/3 𝑁/2之间,N 表示采样点数,这样可以得到谱估计的高分辨率。本次实验使用自相关法求谱估计参数时,选取的采样点数为 256,因此模型阶次的建议选择为 85<N<128,但根据目前的具体实验结果来看,选择30 阶的 AR 模型既可以区分 0.40.42 频率,也没有较多的虚假谱峰,因此优先选择 30 阶的 AR 模型进行谱估计。下面将采用协方差法求解不同次阶的 AR 模型,并分析。

3.1.2 AR 模型协方差法功率谱估计

        直接调用 Matlab 中的 pburg 函数估计功率谱,设置高斯白噪声信噪比 SNR 为 5

%%协方差法求AR模型参数
[Pxx2,F2]=pburg(xn,p,N,Fs);%直接调用matlab中的pburg估计功率谱
Pxx2=10*log10(Pxx2);
figure(2);
plot(F2,Pxx2);
title('AR模型协方差法');

        从图中可以看到,在阶次低于 30 阶的情况下,归一化频率 0.40.42 的区分度由不清晰到区分度越来越清晰;但随着阶次的增高,在阶次 40 60 阶的情况下,出现了较大的虚假谱峰,导致无法区分归一化频率 0.40.42;尤其是在 60 阶以后,已经区分不了归一化频率 0.40.42。根据目前的具体实验结果来看,不论是自相关法还是协方差法的 AR 模型估计功率谱,选择 30 阶的 AR 模型既可以区分 0.40.42 频率,也没有较多的虚假谱峰,因此优先选择 30 阶的 AR 模型进行谱估计。下面将采用 30 阶的 AR 模型谱估计对比经典谱估计,并分析。

3.1.3 AR 模型与经典谱估计对比

        采用经典谱估计的直接法和间接法估计功率谱,并对比 30 阶的 AR 模型自相关法和协方差法估计功率谱,初始信噪比 SNR 设置为 5dB,信噪比 SNR 步进幅度为-5dB

        由图可以看出,四种不同的谱估计方法在SNB=-5dB皆可以有效的估计出功率谱,能够清晰的区分相近频率。那么接下来将不断减小信噪比 SNR,比较功率谱估计情况。

还可以比较:

  • 四种方法在 SNB=0dB 时功率谱估计都可以取得相对不错的效果。

  • 四种方法在 SNB=-5dB 时功率谱估计都还可以区分相近频率点,但是经典谱估计的直接法出现的虚假谱峰较高,已经影响了判别。

  • 四种方法在 SNB=-10dB 时,经典谱估计直接法已经无法识别,经典谱估计间接法功率、AR 模型谱估计自相关法和协方差法还勉强可以识别,经典谱估计间接法功率相对更优。

  • 四种方法在 SNB=-15dB 时,此时四种方法皆不可以识别相近谱峰,无法使用这四种方法进行谱估计。


     文章若有不当和不正确之处,还望理解与指出。由于部分文字、图片等来源于互联网,无法核实真实出处,如涉及相关争议,请联系博主删除。如有错误、疑问和侵权,欢迎评论留言联系作者,或者关注VX公众号:Rain21321,联系作者。

这篇关于现代谱估计分析信号的功率谱(1)---AR 模型谱估计的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1076838

相关文章

Nginx分布式部署流程分析

《Nginx分布式部署流程分析》文章介绍Nginx在分布式部署中的反向代理和负载均衡作用,用于分发请求、减轻服务器压力及解决session共享问题,涵盖配置方法、策略及Java项目应用,并提及分布式事... 目录分布式部署NginxJava中的代理代理分为正向代理和反向代理正向代理反向代理Nginx应用场景

Redis中的有序集合zset从使用到原理分析

《Redis中的有序集合zset从使用到原理分析》Redis有序集合(zset)是字符串与分值的有序映射,通过跳跃表和哈希表结合实现高效有序性管理,适用于排行榜、延迟队列等场景,其时间复杂度低,内存占... 目录开篇:排行榜背后的秘密一、zset的基本使用1.1 常用命令1.2 Java客户端示例二、zse

Redis中的AOF原理及分析

《Redis中的AOF原理及分析》Redis的AOF通过记录所有写操作命令实现持久化,支持always/everysec/no三种同步策略,重写机制优化文件体积,与RDB结合可平衡数据安全与恢复效率... 目录开篇:从日记本到AOF一、AOF的基本执行流程1. 命令执行与记录2. AOF重写机制二、AOF的

MyBatis Plus大数据量查询慢原因分析及解决

《MyBatisPlus大数据量查询慢原因分析及解决》大数据量查询慢常因全表扫描、分页不当、索引缺失、内存占用高及ORM开销,优化措施包括分页查询、流式读取、SQL优化、批处理、多数据源、结果集二次... 目录大数据量查询慢的常见原因优化方案高级方案配置调优监控与诊断总结大数据量查询慢的常见原因MyBAT

分析 Java Stream 的 peek使用实践与副作用处理方案

《分析JavaStream的peek使用实践与副作用处理方案》StreamAPI的peek操作是中间操作,用于观察元素但不终止流,其副作用风险包括线程安全、顺序混乱及性能问题,合理使用场景有限... 目录一、peek 操作的本质:有状态的中间操作二、副作用的定义与风险场景1. 并行流下的线程安全问题2. 顺

MyBatis/MyBatis-Plus同事务循环调用存储过程获取主键重复问题分析及解决

《MyBatis/MyBatis-Plus同事务循环调用存储过程获取主键重复问题分析及解决》MyBatis默认开启一级缓存,同一事务中循环调用查询方法时会重复使用缓存数据,导致获取的序列主键值均为1,... 目录问题原因解决办法如果是存储过程总结问题myBATis有如下代码获取序列作为主键IdMappe

Linux五种IO模型的使用解读

《Linux五种IO模型的使用解读》文章系统解析了Linux的五种IO模型(阻塞、非阻塞、IO复用、信号驱动、异步),重点区分同步与异步IO的本质差异,强调同步由用户发起,异步由内核触发,通过对比各模... 目录1.IO模型简介2.五种IO模型2.1 IO模型分析方法2.2 阻塞IO2.3 非阻塞IO2.4

Java中最全最基础的IO流概述和简介案例分析

《Java中最全最基础的IO流概述和简介案例分析》JavaIO流用于程序与外部设备的数据交互,分为字节流(InputStream/OutputStream)和字符流(Reader/Writer),处理... 目录IO流简介IO是什么应用场景IO流的分类流的超类类型字节文件流应用简介核心API文件输出流应用文

Android 缓存日志Logcat导出与分析最佳实践

《Android缓存日志Logcat导出与分析最佳实践》本文全面介绍AndroidLogcat缓存日志的导出与分析方法,涵盖按进程、缓冲区类型及日志级别过滤,自动化工具使用,常见问题解决方案和最佳实... 目录android 缓存日志(Logcat)导出与分析全攻略为什么要导出缓存日志?按需过滤导出1. 按

Linux中的HTTPS协议原理分析

《Linux中的HTTPS协议原理分析》文章解释了HTTPS的必要性:HTTP明文传输易被篡改和劫持,HTTPS通过非对称加密协商对称密钥、CA证书认证和混合加密机制,有效防范中间人攻击,保障通信安全... 目录一、什么是加密和解密?二、为什么需要加密?三、常见的加密方式3.1 对称加密3.2非对称加密四、