flink 从monggo读取PB级全部数据根据分组统计数据 样例

2024-06-19 01:44

本文主要是介绍flink 从monggo读取PB级全部数据根据分组统计数据 样例,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

简述

  1. 从mongoDB数据库中读取千万级数据。
  2. 根据某个字段进行汇总统计数据。
  3. 将获取的数据保存到redis中,获取最终的统计数据。

maven

 		<dependency><groupId>org.apache.flink</groupId><artifactId>flink-connector-mongodb</artifactId><version>1.1.0-1.18</version></dependency><dependency><groupId>org.apache.flink</groupId><artifactId>flink-connector-base</artifactId><version>${flink.version}</version></dependency><dependency><groupId>org.apache.flink</groupId><artifactId>flink-streaming-scala_2.12</artifactId><version>1.8.2</version></dependency><dependency><groupId>org.apache.flink</groupId><artifactId>flink-java</artifactId><version>${flink.version}</version></dependency><dependency><groupId>org.apache.flink</groupId><artifactId>flink-core</artifactId><version>${flink.version}</version></dependency><dependency><groupId>org.apache.flink</groupId><artifactId>flink-streaming-java</artifactId><version>${flink.version}</version></dependency><dependency><groupId>org.apache.flink</groupId><artifactId>flink-clients</artifactId><version>${flink.version}</version></dependency>   <dependency><groupId>org.apache.bahir</groupId><artifactId>flink-connector-redis_2.11</artifactId><version>1.1.0</version></dependency>     

代码

RedisExampleMapper

package com.wfg.flink.connector.redis;import org.apache.flink.api.java.tuple.Tuple2;
import org.apache.flink.streaming.connectors.redis.common.mapper.RedisCommand;
import org.apache.flink.streaming.connectors.redis.common.mapper.RedisCommandDescription;
import org.apache.flink.streaming.connectors.redis.common.mapper.RedisMapper;/*** @author wfg*/
public class RedisExampleMapper implements RedisMapper<Tuple2<String, Integer>> {@Overridepublic RedisCommandDescription getCommandDescription() {return new RedisCommandDescription(RedisCommand.HSET, "HASH_NAME");}@Overridepublic String getKeyFromData(Tuple2<String, Integer> data) {return data.f0;}@Overridepublic String getValueFromData(Tuple2<String, Integer> data) {return data.f1.toString();}
}

根据名字统计访问次数

package com.wfg.flink.connector.mongodb;import cn.hutool.core.date.DateUtil;
import com.alibaba.fastjson2.JSONObject;
import com.wfg.flink.connector.dto.KafkaPvDto;
import com.wfg.flink.connector.redis.RedisExampleMapper;
import org.apache.flink.api.common.eventtime.WatermarkStrategy;
import org.apache.flink.api.common.functions.MapFunction;
import org.apache.flink.api.common.functions.ReduceFunction;
import org.apache.flink.api.common.typeinfo.BasicTypeInfo;
import org.apache.flink.api.common.typeinfo.TypeInformation;
import org.apache.flink.api.java.tuple.Tuple2;
import org.apache.flink.configuration.MemorySize;
import org.apache.flink.connector.mongodb.source.MongoSource;
import org.apache.flink.connector.mongodb.source.enumerator.splitter.PartitionStrategy;
import org.apache.flink.connector.mongodb.source.reader.deserializer.MongoDeserializationSchema;
import org.apache.flink.runtime.state.hashmap.HashMapStateBackend;
import org.apache.flink.streaming.api.CheckpointingMode;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.connectors.redis.RedisSink;
import org.apache.flink.streaming.connectors.redis.common.config.FlinkJedisPoolConfig;
import org.bson.BsonDocument;import static com.wfg.flink.connector.constants.Constants.MONGO_TEST_PV_COLLECTION;/*** @author wfg* 根据名字统计访问次数*/
public class MongoAllNameRedisCounts {public static void main(String[] args) throws Exception {String startTime = DateUtil.format(DateUtil.date(), "yyyy-MM-dd HH:mm:ss");System.out.println("StartTime:" + startTime);final StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();// 开启Checkpointing,设置Checkpoint间隔env.enableCheckpointing(30000);// 设置Checkpoint模式env.getCheckpointConfig().setCheckpointingMode(CheckpointingMode.EXACTLY_ONCE);// 设置最小Checkpoint间隔env.getCheckpointConfig().setMinPauseBetweenCheckpoints(500);// 设置最大并发Checkpoint数目env.getCheckpointConfig().setMaxConcurrentCheckpoints(1);// 使用RocksDB作为状态后端env.setStateBackend(new HashMapStateBackend());env.setParallelism(10);// 配置MongoDB源MongoSource<String> mongoSource = MongoSource.<String>builder().setUri("mongodb://root:123456@127.0.0.1:27017,127.0.0.1:27018,127.0.0.1:27019/admin?replicaSet=rs0&authSource=admin").setDatabase("sjzz").setCollection(MONGO_TEST_PV_COLLECTION).setFetchSize(2048)
//                .setLimit(1000).setNoCursorTimeout(true).setPartitionStrategy(PartitionStrategy.SINGLE).setPartitionSize(MemorySize.ofMebiBytes(64))
//                .setSamplesPerPartition(10).setDeserializationSchema(new MongoDeserializationSchema<>() {@Overridepublic String deserialize(BsonDocument document) {return document.toJson();}@Overridepublic TypeInformation<String> getProducedType() {return BasicTypeInfo.STRING_TYPE_INFO;}}).build();// 创建MongoDB数据流DataStream<String> sourceStream = env.fromSource(mongoSource, WatermarkStrategy.noWatermarks(), "kafka Mongo Source");
// 转换数据,提取人名作为KeyDataStream<Tuple2<String, Integer>> nameCountStream = sourceStream.map(new MapFunction<String, Tuple2<String, Integer>>() {@Overridepublic Tuple2<String, Integer> map(String value) throws Exception {KafkaPvDto data = JSONObject.parseObject(value, KafkaPvDto.class);return Tuple2.of(data.getUserName(), 1);}}).keyBy(value -> value.f0).reduce(new ReduceFunction<>() {@Overridepublic Tuple2<String, Integer> reduce(Tuple2<String, Integer> value1, Tuple2<String, Integer> value2) {return new Tuple2<>(value1.f0, value1.f1 + value2.f1);}});FlinkJedisPoolConfig conf = new FlinkJedisPoolConfig.Builder().setHost("127.0.0.1").build();RedisSink<Tuple2<String, Integer>> sink = new RedisSink<>(conf, new RedisExampleMapper());nameCountStream.addSink(sink);// 输出结果env.execute("Flink MongoDB Name Count ");System.out.println("-----------------------------------");System.out.println("startTime: " + startTime);System.out.println("EndTime: " + DateUtil.format(DateUtil.date(), "yyyy-MM-dd HH:mm:ss"));}
}

注意:
大数据生成参考:批量数据生成
中间件部署参考:

  • kafka:部署
  • mongo:部署

这篇关于flink 从monggo读取PB级全部数据根据分组统计数据 样例的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1073662

相关文章

SpringBoot多环境配置数据读取方式

《SpringBoot多环境配置数据读取方式》SpringBoot通过环境隔离机制,支持properties/yaml/yml多格式配置,结合@Value、Environment和@Configura... 目录一、多环境配置的核心思路二、3种配置文件格式详解2.1 properties格式(传统格式)1.

解决pandas无法读取csv文件数据的问题

《解决pandas无法读取csv文件数据的问题》本文讲述作者用Pandas读取CSV文件时因参数设置不当导致数据错位,通过调整delimiter和on_bad_lines参数最终解决问题,并强调正确参... 目录一、前言二、问题复现1. 问题2. 通过 on_bad_lines=‘warn’ 跳过异常数据3

C#监听txt文档获取新数据方式

《C#监听txt文档获取新数据方式》文章介绍通过监听txt文件获取最新数据,并实现开机自启动、禁用窗口关闭按钮、阻止Ctrl+C中断及防止程序退出等功能,代码整合于主函数中,供参考学习... 目录前言一、监听txt文档增加数据二、其他功能1. 设置开机自启动2. 禁止控制台窗口关闭按钮3. 阻止Ctrl +

java如何实现高并发场景下三级缓存的数据一致性

《java如何实现高并发场景下三级缓存的数据一致性》这篇文章主要为大家详细介绍了java如何实现高并发场景下三级缓存的数据一致性,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 下面代码是一个使用Java和Redisson实现的三级缓存服务,主要功能包括:1.缓存结构:本地缓存:使

在MySQL中实现冷热数据分离的方法及使用场景底层原理解析

《在MySQL中实现冷热数据分离的方法及使用场景底层原理解析》MySQL冷热数据分离通过分表/分区策略、数据归档和索引优化,将频繁访问的热数据与冷数据分开存储,提升查询效率并降低存储成本,适用于高并发... 目录实现冷热数据分离1. 分表策略2. 使用分区表3. 数据归档与迁移在mysql中实现冷热数据分

C#解析JSON数据全攻略指南

《C#解析JSON数据全攻略指南》这篇文章主要为大家详细介绍了使用C#解析JSON数据全攻略指南,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录一、为什么jsON是C#开发必修课?二、四步搞定网络JSON数据1. 获取数据 - HttpClient最佳实践2. 动态解析 - 快速

Python使用openpyxl读取Excel的操作详解

《Python使用openpyxl读取Excel的操作详解》本文介绍了使用Python的openpyxl库进行Excel文件的创建、读写、数据操作、工作簿与工作表管理,包括创建工作簿、加载工作簿、操作... 目录1 概述1.1 图示1.2 安装第三方库2 工作簿 workbook2.1 创建:Workboo

MyBatis-Plus通用中等、大量数据分批查询和处理方法

《MyBatis-Plus通用中等、大量数据分批查询和处理方法》文章介绍MyBatis-Plus分页查询处理,通过函数式接口与Lambda表达式实现通用逻辑,方法抽象但功能强大,建议扩展分批处理及流式... 目录函数式接口获取分页数据接口数据处理接口通用逻辑工具类使用方法简单查询自定义查询方法总结函数式接口

Java中读取YAML文件配置信息常见问题及解决方法

《Java中读取YAML文件配置信息常见问题及解决方法》:本文主要介绍Java中读取YAML文件配置信息常见问题及解决方法,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要... 目录1 使用Spring Boot的@ConfigurationProperties2. 使用@Valu

SQL中如何添加数据(常见方法及示例)

《SQL中如何添加数据(常见方法及示例)》SQL全称为StructuredQueryLanguage,是一种用于管理关系数据库的标准编程语言,下面给大家介绍SQL中如何添加数据,感兴趣的朋友一起看看吧... 目录在mysql中,有多种方法可以添加数据。以下是一些常见的方法及其示例。1. 使用INSERT I