设计模式C++实现(4)——外观模式、组合模式

2024-06-18 16:32

本文主要是介绍设计模式C++实现(4)——外观模式、组合模式,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!


软件领域中的设计模式为开发人员提供了一种使用专家设计经验的有效途径。设计模式中运用了面向对象编程语言的重要特性:封装、继承、多态,真正领悟设计模式的精髓是可能一个漫长的过程,需要大量实践经验的积累。最近看设计模式的书,对于每个模式,用C++写了个小例子,加深一下理解。主要参考《大话设计模式》和《设计模式:可复用面向对象软件的基础》(DP)两本书。本文介绍外观模式和组合模式的实现。

       外观模式应该是用的很多的一种模式,特别是当一个系统很复杂时,系统提供给客户的是一个简单的对外接口,而把里面复杂的结构都封装了起来。客户只需使用这些简单接口就能使用这个系统,而不需要关注内部复杂的结构。DP一书的定义:为子系统中的一组接口提供一个一致的界面, 外观模式定义了一个高层接口,这个接口使得这一子系统更加容易使用。举个编译器的例子,假设编译一个程序需要经过四个步骤:词法分析、语法分析、中间代码生成、机器码生成。学过编译都知道,每一步都很复杂。对于编译器这个系统,就可以使用外观模式。可以定义一个高层接口,比如名为Compiler的类,里面有一个名为Run的函数。客户只需调用这个函数就可以编译程序,至于Run函数内部的具体操作,客户无需知道。下面给出UML图,以编译器为实例。


        相应的代码实现为:

[cpp]  view plain  copy
  1. class Scanner  
  2. {  
  3. public:  
  4.     void Scan() { cout<<"词法分析"<<endl; }  
  5. };  
  6. class Parser  
  7. {  
  8. public:  
  9.     void Parse() { cout<<"语法分析"<<endl; }  
  10. };  
  11. class GenMidCode  
  12. {  
  13. public:  
  14.     void GenCode() { cout<<"产生中间代码"<<endl; }  
  15. };  
  16. class GenMachineCode  
  17. {  
  18. public:  
  19.     void GenCode() { cout<<"产生机器码"<<endl;}  
  20. };  
  21. //高层接口  
  22. class Compiler  
  23. {  
  24. public:  
  25.     void Run()   
  26.     {  
  27.         Scanner scanner;  
  28.         Parser parser;  
  29.         GenMidCode genMidCode;  
  30.         GenMachineCode genMacCode;  
  31.         scanner.Scan();  
  32.         parser.Parse();  
  33.         genMidCode.GenCode();  
  34.         genMacCode.GenCode();  
  35.     }  
  36. };  

       客户使用方式:

[cpp]  view plain  copy
  1. int main()  
  2. {  
  3.     Compiler compiler;  
  4.     compiler.Run();  
  5.     return 0;  
  6. }  
       这就是外观模式,它有几个特点(摘自DP一书),(1)它对客户屏蔽子系统组件,因而减少了客户处理的对象的数目并使得子系统使用起来更加方便。(2)它实现了子系统与客户之间的松耦合关系,而子系统内部的功能组件往往是紧耦合的。(3)如果应用需要,它并不限制它们使用子系统类。

       结合上面编译器这个例子,进一步说明。对于(1),编译器类对客户屏蔽了子系统组件,客户只需处理编译器的对象就可以方便的使用子系统。对于(2),子系统的变化,不会影响到客户的使用,体现了子系统与客户的松耦合关系。对于(3),如果客户希望使用词法分析器,只需定义词法分析的类对象即可,并不受到限制。

      外观模式在构建大型系统时非常有用。接下来介绍另一种模式,称为组合模式。感觉有点像外观模式,刚才我们实现外观模式时,在Compiler这个类中包含了多个类的对象,就像把这些类组合在了一起。组合模式是不是这个意思,有点相似,其实不然。

      DP书上给出的定义:将对象组合成树形结构以表示“部分-整体”的层次结构。组合使得用户对单个对象和组合对象的使用具有一致性。注意两个字“树形”。这种树形结构在现实生活中随处可见,比如一个集团公司,它有一个母公司,下设很多家子公司。不管是母公司还是子公司,都有各自直属的财务部、人力资源部、销售部等。对于母公司来说,不论是子公司,还是直属的财务部、人力资源部,都是它的部门。整个公司的部门拓扑图就是一个树形结构。

      下面给出组合模式的UML图。从图中可以看到,FinanceDepartment、HRDepartment两个类作为叶结点,因此没有定义添加函数。而ConcreteCompany类可以作为中间结点,所以可以有添加函数。那么怎么添加呢?这个类中定义了一个链表,用来放添加的元素。

       相应的代码实现为:

[cpp]  view plain  copy
  1. class Company    
  2. {  
  3. public:  
  4.     Company(string name) { m_name = name; }  
  5.     virtual ~Company(){}  
  6.     virtual void Add(Company *pCom){}  
  7.     virtual void Show(int depth) {}  
  8. protected:  
  9.     string m_name;  
  10. };  
  11. //具体公司  
  12. class ConcreteCompany : public Company    
  13. {  
  14. public:  
  15.     ConcreteCompany(string name): Company(name) {}  
  16.     virtual ~ConcreteCompany() {}  
  17.     void Add(Company *pCom) { m_listCompany.push_back(pCom); } //位于树的中间,可以增加子树  
  18.     void Show(int depth)  
  19.     {  
  20.         for(int i = 0;i < depth; i++)  
  21.             cout<<"-";  
  22.         cout<<m_name<<endl;  
  23.         list<Company *>::iterator iter=m_listCompany.begin();  
  24.         for(; iter != m_listCompany.end(); iter++) //显示下层结点  
  25.             (*iter)->Show(depth + 2);  
  26.     }  
  27. private:  
  28.     list<Company *> m_listCompany;  
  29. };  
  30. //具体的部门,财务部  
  31. class FinanceDepartment : public Company   
  32. {  
  33. public:  
  34.     FinanceDepartment(string name):Company(name){}  
  35.     virtual ~FinanceDepartment() {}  
  36.     virtual void Show(int depth) //只需显示,无限添加函数,因为已是叶结点  
  37.     {  
  38.         for(int i = 0; i < depth; i++)  
  39.             cout<<"-";  
  40.         cout<<m_name<<endl;  
  41.     }  
  42. };  
  43. //具体的部门,人力资源部  
  44. class HRDepartment :public Company    
  45. {  
  46. public:  
  47.     HRDepartment(string name):Company(name){}  
  48.     virtual ~HRDepartment() {}  
  49.     virtual void Show(int depth) //只需显示,无限添加函数,因为已是叶结点  
  50.     {  
  51.         for(int i = 0; i < depth; i++)  
  52.             cout<<"-";  
  53.         cout<<m_name<<endl;  
  54.     }  
  55. };  

         客户使用方式:

[cpp]  view plain  copy
  1. int main()  
  2. {  
  3.     Company *root = new ConcreteCompany("总公司");  
  4.     Company *leaf1=new FinanceDepartment("财务部");  
  5.     Company *leaf2=new HRDepartment("人力资源部");  
  6.     root->Add(leaf1);  
  7.     root->Add(leaf2);  
  8.   
  9.     //分公司A  
  10.     Company *mid1 = new ConcreteCompany("分公司A");  
  11.     Company *leaf3=new FinanceDepartment("财务部");  
  12.     Company *leaf4=new HRDepartment("人力资源部");  
  13.     mid1->Add(leaf3);  
  14.     mid1->Add(leaf4);  
  15.     root->Add(mid1);  
  16.     //分公司B  
  17.     Company *mid2=new ConcreteCompany("分公司B");  
  18.     FinanceDepartment *leaf5=new FinanceDepartment("财务部");  
  19.     HRDepartment *leaf6=new HRDepartment("人力资源部");  
  20.     mid2->Add(leaf5);  
  21.     mid2->Add(leaf6);  
  22.     root->Add(mid2);  
  23.     root->Show(0);  
  24.   
  25.     delete leaf1; delete leaf2;  
  26.     delete leaf3; delete leaf4;  
  27.     delete leaf5; delete leaf6;   
  28.     delete mid1; delete mid2;  
  29.     delete root;  
  30.     return 0;  
  31. }  

        上面的实现方式有缺点,就是内存的释放不好,需要客户自己动手,非常不方便。有待改进,比较好的做法是让ConcreteCompany类来释放。因为所有的指针都是存在ConcreteCompany类的链表中。C++的麻烦,没有垃圾回收机制。

















本文转自:

http://blog.csdn.net/wuzhekai1985/article/details/6667564










这篇关于设计模式C++实现(4)——外观模式、组合模式的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1072514

相关文章

C++中RAII资源获取即初始化

《C++中RAII资源获取即初始化》RAII通过构造/析构自动管理资源生命周期,确保安全释放,本文就来介绍一下C++中的RAII技术及其应用,具有一定的参考价值,感兴趣的可以了解一下... 目录一、核心原理与机制二、标准库中的RAII实现三、自定义RAII类设计原则四、常见应用场景1. 内存管理2. 文件操

C++中零拷贝的多种实现方式

《C++中零拷贝的多种实现方式》本文主要介绍了C++中零拷贝的实现示例,旨在在减少数据在内存中的不必要复制,从而提高程序性能、降低内存使用并减少CPU消耗,零拷贝技术通过多种方式实现,下面就来了解一下... 目录一、C++中零拷贝技术的核心概念二、std::string_view 简介三、std::stri

C++高效内存池实现减少动态分配开销的解决方案

《C++高效内存池实现减少动态分配开销的解决方案》C++动态内存分配存在系统调用开销、碎片化和锁竞争等性能问题,内存池通过预分配、分块管理和缓存复用解决这些问题,下面就来了解一下... 目录一、C++内存分配的性能挑战二、内存池技术的核心原理三、主流内存池实现:TCMalloc与Jemalloc1. TCM

OpenCV实现实时颜色检测的示例

《OpenCV实现实时颜色检测的示例》本文主要介绍了OpenCV实现实时颜色检测的示例,通过HSV色彩空间转换和色调范围判断实现红黄绿蓝颜色检测,包含视频捕捉、区域标记、颜色分析等功能,具有一定的参考... 目录一、引言二、系统概述三、代码解析1. 导入库2. 颜色识别函数3. 主程序循环四、HSV色彩空间

Redis Cluster模式配置

《RedisCluster模式配置》:本文主要介绍RedisCluster模式配置,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录分片 一、分片的本质与核心价值二、分片实现方案对比 ‌三、分片算法详解1. ‌范围分片(顺序分片)‌2. ‌哈希分片3. ‌虚

Python实现精准提取 PDF中的文本,表格与图片

《Python实现精准提取PDF中的文本,表格与图片》在实际的系统开发中,处理PDF文件不仅限于读取整页文本,还有提取文档中的表格数据,图片或特定区域的内容,下面我们来看看如何使用Python实... 目录安装 python 库提取 PDF 文本内容:获取整页文本与指定区域内容获取页面上的所有文本内容获取

基于Python实现一个Windows Tree命令工具

《基于Python实现一个WindowsTree命令工具》今天想要在Windows平台的CMD命令终端窗口中使用像Linux下的tree命令,打印一下目录结构层级树,然而还真有tree命令,但是发现... 目录引言实现代码使用说明可用选项示例用法功能特点添加到环境变量方法一:创建批处理文件并添加到PATH1

Java使用HttpClient实现图片下载与本地保存功能

《Java使用HttpClient实现图片下载与本地保存功能》在当今数字化时代,网络资源的获取与处理已成为软件开发中的常见需求,其中,图片作为网络上最常见的资源之一,其下载与保存功能在许多应用场景中都... 目录引言一、Apache HttpClient简介二、技术栈与环境准备三、实现图片下载与保存功能1.

C++ 函数 strftime 和时间格式示例详解

《C++函数strftime和时间格式示例详解》strftime是C/C++标准库中用于格式化日期和时间的函数,定义在ctime头文件中,它将tm结构体中的时间信息转换为指定格式的字符串,是处理... 目录C++ 函数 strftipythonme 详解一、函数原型二、功能描述三、格式字符串说明四、返回值五

canal实现mysql数据同步的详细过程

《canal实现mysql数据同步的详细过程》:本文主要介绍canal实现mysql数据同步的详细过程,本文通过实例图文相结合给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的... 目录1、canal下载2、mysql同步用户创建和授权3、canal admin安装和启动4、canal