基于相关向量机RVM的回归预测算法

2024-06-18 07:18

本文主要是介绍基于相关向量机RVM的回归预测算法,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

基于相关向量机RVM的回归预测算法

文章目录

  • 基于相关向量机RVM的回归预测算法
    • 1.RVM原理
    • 2.算法实验与结果
    • 3.参考文献:
    • 4.MATLAB代码

摘要:本文主要介绍相关向量机RVM的基本原理,以及在预测问题中的应用。

1.RVM原理

RVM算法是一种基于贝叶斯框架的机器学习模型 ,通过最大化边际似然得到相关向量和权重。

{ x } u = 1 N \{x\}_{u=1}^N {x}u=1N​和 { t } u = 1 N \{t\}_{u=1}^N {t}u=1N​分别是输入向量和输出向量,目标 t t t​可采用如式(1)所示的回归模型获得:
t = y ( x ) + ξ n (1) t =y(x)+\xi_n \tag{1} t=y(x)+ξn(1)
式中: ξ n \xi_n ξn为零均值、方差 σ 2 σ^2 σ2的噪声, y ( x ) y(x) y(x) 定义为:
y ( x ) = ∑ u = 1 N w u K ( x , x u ) + w 0 (2) y(x)=\sum_{u=1}^Nw_uK(x,x_u)+w_0 \tag{2} y(x)=u=1NwuK(x,xu)+w0(2)
式中: K ( x , x u ) K(x,x_u) K(x,xu) 是核函数, w u w_u wu 是权重向量, w 0 w_0 w0是偏差。设 t t t​是独立的,其概率定义为:
p ( t ∣ w , σ 2 ) = ( 2 π σ 2 ) − N / 2 e x p ( − ∣ ∣ t − w φ ∣ ∣ 2 2 σ 2 ) (3) p(t|w,\sigma^2)=(2\pi\sigma^2)^{-N/2}exp(-\frac{||t-w\varphi||^2}{2\sigma^2})\tag{3} p(tw,σ2)=(2πσ2)N/2exp(2σ2twφ2)(3)
式中: t = ( t 1 , t 2 , . . . , t N ) T , w = ( w 0 , w 1 , . . . , w n ) T t=(t_1,t_2,...,t_N)^T,w=(w_0,w_1,...,w_n)^T t=(t1,t2,...,tN)T,w=(w0,w1,...,wn)T, φ \varphi φ N ( N + 1 ) N(N+1) N(N+1)​的矩阵。

式(3)中的 w w w σ σ σ最大似然估计会导致过拟合,为约束参数,定义一个零均值高斯先验概率分布:
p ( w ∣ α ) = ∏ u = 0 N N ( w u ∣ 0 , α u − 1 ) (4) p(w|\alpha)=\prod_{u=0}^NN(w_u|0,\alpha_u^{-1})\tag{4} p(wα)=u=0NN(wu0,αu1)(4)
式中: α α α N + 1 N +1 N+1 维的超参数向量。

依据贝叶斯公式,未知参数的后验概率为:
p ( w , α , σ 2 ∣ t ) = p ( w ∣ α , σ 2 , t ) p ( α , σ 2 ∣ t ) (5) p(w,\alpha,\sigma^2|t)=p(w|\alpha,\sigma^2,t)p(\alpha,\sigma^2|t)\tag{5} p(w,α,σ2t)=p(wα,σ2,t)p(α,σ2t)(5)
后验分布的权重被描述为:
p ( w ∣ t , α , σ 2 ) = ( 2 π ) − ( N + 1 ) / 2 ∣ Σ ∣ − 1 / N e x p ( − 1 2 ( w − u ) T Σ − 1 ( w − u ) ) (6) p(w|t,\alpha,\sigma^2)=(2\pi)^{-(N+1)/2}|\Sigma|^{-1/N}exp(-\frac{1}{2}(w-u)^T\Sigma ^{-1}(w-u))\tag{6} p(wt,α,σ2)=(2π)(N+1)/2Σ1/Nexp(21(wu)TΣ1(wu))(6)
式中:后验均值 u = σ − 2 Σ φ T t u=\sigma^{-2}\Sigma\varphi^Tt u=σ2ΣφTt,协方差 Σ = ( σ − 2 φ T φ + A ) − 1 \Sigma=(\sigma^{-2}\varphi^T\varphi+A)^{-1} Σ=(σ2φTφ+A)1, A = d i a g ( α 0 , α 1 , . . . , α N ) A=diag(\alpha_0,\alpha_1,...,\alpha_N) A=diag(α0,α1,...,αN)​。

为了实现统一的超参数,​做出如下定义:
p ( t ∣ α , σ 2 ) = ∫ p ( t ∣ w , σ 2 ) p ( w , α ) d w = ( 2 π ) − N / 2 ∣ σ 2 I + φ A − 1 φ T ∣ e x p ( − 1 2 t T ( σ 2 I + φ A − 1 φ T ) − 1 t ) (7) p(t|\alpha,\sigma^2)=\int p(t|w,\sigma^2)p(w,\alpha)dw =(2\pi)^{-N/2}|\sigma^2I+\varphi A^{-1}\varphi^T|exp(-\frac{1}{2}t^T(\sigma^2I + \varphi A^{-1}\varphi^T)^{-1}t)\tag{7} p(tα,σ2)=p(tw,σ2)p(w,α)dw=(2π)N/2σ2I+φA1φTexp(21tT(σ2I+φA1φT)1t)(7)
高斯径向基函数具有较强的非线性处理能力,被用作核函数,其定义如下:
K ( x , x u ) = e x p ( − ( x − x u ) 2 2 γ 2 ) (7) K(x,x_u)=exp(-\frac{(x-x_u)^2}{2\gamma^2})\tag{7} K(x,xu)=exp(2γ2(xxu)2)(7)
式中: γ γ γ 为宽度因子,对模型的精度有极大的影响,需要预先设定。

2.算法实验与结果

本文算法数据数量一共为250组数据。其中前200组数据用训练,后50组数据用作测试数据。数据的输入维度为2维,输出维度为1维。

数据类别数据量
训练数据200
测试数据50

设置RVM的核函数为高斯径向基函数,核宽度为3。得到的结果如下图所示:

请添加图片描述
请添加图片描述

训练集MSE:0.0010558
测试集MSE:0.0016036

从结果曲线,和训练集MSE以及测试集MSE来看,RVM在回归预测问题上表现了较好的结果。

3.参考文献:

[1] TIPPPING M E. Sparse Bayesian learning and the relevance vector machine[J]. The journal of machine learning research,2001,1: 211-244.

4.MATLAB代码

在这里插入图片描述

这篇关于基于相关向量机RVM的回归预测算法的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1071634

相关文章

Maven中引入 springboot 相关依赖的方式(最新推荐)

《Maven中引入springboot相关依赖的方式(最新推荐)》:本文主要介绍Maven中引入springboot相关依赖的方式(最新推荐),本文给大家介绍的非常详细,对大家的学习或工作具有... 目录Maven中引入 springboot 相关依赖的方式1. 不使用版本管理(不推荐)2、使用版本管理(推

Python的time模块一些常用功能(各种与时间相关的函数)

《Python的time模块一些常用功能(各种与时间相关的函数)》Python的time模块提供了各种与时间相关的函数,包括获取当前时间、处理时间间隔、执行时间测量等,:本文主要介绍Python的... 目录1. 获取当前时间2. 时间格式化3. 延时执行4. 时间戳运算5. 计算代码执行时间6. 转换为指

openCV中KNN算法的实现

《openCV中KNN算法的实现》KNN算法是一种简单且常用的分类算法,本文主要介绍了openCV中KNN算法的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的... 目录KNN算法流程使用OpenCV实现KNNOpenCV 是一个开源的跨平台计算机视觉库,它提供了各

springboot+dubbo实现时间轮算法

《springboot+dubbo实现时间轮算法》时间轮是一种高效利用线程资源进行批量化调度的算法,本文主要介绍了springboot+dubbo实现时间轮算法,文中通过示例代码介绍的非常详细,对大家... 目录前言一、参数说明二、具体实现1、HashedwheelTimer2、createWheel3、n

SpringBoot实现MD5加盐算法的示例代码

《SpringBoot实现MD5加盐算法的示例代码》加盐算法是一种用于增强密码安全性的技术,本文主要介绍了SpringBoot实现MD5加盐算法的示例代码,文中通过示例代码介绍的非常详细,对大家的学习... 目录一、什么是加盐算法二、如何实现加盐算法2.1 加盐算法代码实现2.2 注册页面中进行密码加盐2.

JavaScript Array.from及其相关用法详解(示例演示)

《JavaScriptArray.from及其相关用法详解(示例演示)》Array.from方法是ES6引入的一个静态方法,用于从类数组对象或可迭代对象创建一个新的数组实例,本文将详细介绍Array... 目录一、Array.from 方法概述1. 方法介绍2. 示例演示二、结合实际场景的使用1. 初始化二

Java时间轮调度算法的代码实现

《Java时间轮调度算法的代码实现》时间轮是一种高效的定时调度算法,主要用于管理延时任务或周期性任务,它通过一个环形数组(时间轮)和指针来实现,将大量定时任务分摊到固定的时间槽中,极大地降低了时间复杂... 目录1、简述2、时间轮的原理3. 时间轮的实现步骤3.1 定义时间槽3.2 定义时间轮3.3 使用时

如何通过Golang的container/list实现LRU缓存算法

《如何通过Golang的container/list实现LRU缓存算法》文章介绍了Go语言中container/list包实现的双向链表,并探讨了如何使用链表实现LRU缓存,LRU缓存通过维护一个双向... 目录力扣:146. LRU 缓存主要结构 List 和 Element常用方法1. 初始化链表2.

golang字符串匹配算法解读

《golang字符串匹配算法解读》文章介绍了字符串匹配算法的原理,特别是Knuth-Morris-Pratt(KMP)算法,该算法通过构建模式串的前缀表来减少匹配时的不必要的字符比较,从而提高效率,在... 目录简介KMP实现代码总结简介字符串匹配算法主要用于在一个较长的文本串中查找一个较短的字符串(称为

通俗易懂的Java常见限流算法具体实现

《通俗易懂的Java常见限流算法具体实现》:本文主要介绍Java常见限流算法具体实现的相关资料,包括漏桶算法、令牌桶算法、Nginx限流和Redis+Lua限流的实现原理和具体步骤,并比较了它们的... 目录一、漏桶算法1.漏桶算法的思想和原理2.具体实现二、令牌桶算法1.令牌桶算法流程:2.具体实现2.1