数据可视化实验一:Panda数据处理及matplotlib绘图初步

本文主要是介绍数据可视化实验一:Panda数据处理及matplotlib绘图初步,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录​​​​​​​

2024-6-17

一、请将所有含有发明家“吴峰”的发明专利的“申请日”打印出来。并将含有“吴峰”的所有发明专利条目保存到Excel中

1.1 代码实现

1.2 运行结果

二、读取文件创建城市、人口、性别比、城镇化率DataFrame对象,计算指标排名,尝试使用plot绘图

2.1 代码实现

2.2 绘制结果


一、请将所有含有发明家“吴峰”的发明专利的“申请日”打印出来。并将含有“吴峰”的所有发明专利条目保存到Excel中

1.1 代码实现

# 实验要求:请将  所有含有发明家“吴峰”的发明专利的“申请日”打印出来。并将含有“吴峰”的所有发明专利条目保存到Excel中# 导入pandas库
import pandas as pd# 从 Excel 读取数据
df = pd.read_excel("实验课数据1.xlsx")# 筛选出含有发明家“吴峰”的发明专利的“申请日”
filed_df = df[df["发明人"].str.contains("吴峰")]# 打印含有发明家“吴峰”的发明专利的“申请日”
print(filed_df[["申请日"]])# 保存含有“吴峰”的所有发明专利条目到 Excel 中
filed_df.to_excel("含有‘吴峰’的发明专利.xlsx", index=False)

1.2 运行结果

(1)原数据“实验课数据1.xlsx”

(2)筛选后的结果

(申请号不一样的原因是系统自动转换的结果)

(3)打印申请日

二、读取文件创建城市、人口、性别比、城镇化率DataFrame对象,计算指标排名,尝试使用plot绘图

2.1 代码实现

# 实验要求:读取文件创建城市、人口、性别比、城镇化率DataFrame对象,计算指标排名,尝试使用plot绘图
import pandas as pd
import matplotlib.pyplot as plt
import matplotlib.font_manager as fm# 设置字体
plt.rcParams['font.family'] = ['Arial Unicode MS']# data=pd.read_excel('江西省2021年人口普查.xlsx ', engine='openpyxl')
# 创建包含城市、人口、性别比、城镇化率的 DataFrame,江西省不属于城市,不放入考虑范围
data = {'城市': ['南昌市', '景德镇市', '萍乡市', '九江市', '新余市', '鹰潭市', '赣州市', '吉安市', '宜春市', '抚州市', '上饶市'],'年末常住人口(万人)': [643.75, 162.06, 180.59, 456.07, 120.21, 115.5, 898, 442.51, 497.11, 357.94, 643.67],'总人口性别比(女性=100)': [109.98, 107.77, 103.8, 105.56, 109.45, 107.73, 106.02, 106.73, 107.04, 107.22, 106.71],'常住人口城镇化率(%)': [78.64, 65.94, 68.77, 62.15, 74.14, 65.43, 56.35, 53.41, 57.38, 57.96, 55.31]
}df = pd.DataFrame(data)
print(df)
# 计算指标排名
df['人口排名'] = df['年末常住人口(万人)'].rank(ascending=False)
df['性别比排名'] = df['总人口性别比(女性=100)'].rank(ascending=True)
df['城镇化率排名'] = df['常住人口城镇化率(%)'].rank(ascending=False)# 可视化数据
plt.figure(figsize=(12, 6))
plt.show()# 每个部分设置不同的颜色
plt.subplot(1, 3, 1)
df[['城市', '人口排名']].set_index('城市').plot(kind='bar', color='skyblue')
plt.title('人口排名')
plt.show()plt.subplot(1, 3, 2)
df[['城市', '性别比排名']].set_index('城市').plot(kind='bar', color='salmon')
plt.title('性别比排名')
plt.show()plt.subplot(1, 3, 3)
df[['城市', '城镇化率排名']].set_index('城市').plot(kind='bar', color='lightgreen')
plt.title('城镇化率排名')plt.tight_layout()
plt.show()

2.2 绘制结果

(1)创建的DataFrame对象

(2)然后进行指标排名,绘图结果如下

I  按照人口排名

绘制结果如下,由于是根据人口排名而不是人口数量进行柱状图绘制,因此可以很直观的看出赣州市的人口数量最多;相反,鹰潭市的人口数量最少。

II 按照性别比排名

由上述图形可以看出,萍乡市的性别比排名第一,而南昌市则是最后一名。

III 按照城镇化率排名

由上图可以看出南昌市的城镇化率是全省最高的,而吉安的城镇化率则居全省末尾。

--------------------

期末加油!

这篇关于数据可视化实验一:Panda数据处理及matplotlib绘图初步的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1071235

相关文章

SpringBoot分段处理List集合多线程批量插入数据方式

《SpringBoot分段处理List集合多线程批量插入数据方式》文章介绍如何处理大数据量List批量插入数据库的优化方案:通过拆分List并分配独立线程处理,结合Spring线程池与异步方法提升效率... 目录项目场景解决方案1.实体类2.Mapper3.spring容器注入线程池bejsan对象4.创建

PHP轻松处理千万行数据的方法详解

《PHP轻松处理千万行数据的方法详解》说到处理大数据集,PHP通常不是第一个想到的语言,但如果你曾经需要处理数百万行数据而不让服务器崩溃或内存耗尽,你就会知道PHP用对了工具有多强大,下面小编就... 目录问题的本质php 中的数据流处理:为什么必不可少生成器:内存高效的迭代方式流量控制:避免系统过载一次性

C#实现千万数据秒级导入的代码

《C#实现千万数据秒级导入的代码》在实际开发中excel导入很常见,现代社会中很容易遇到大数据处理业务,所以本文我就给大家分享一下千万数据秒级导入怎么实现,文中有详细的代码示例供大家参考,需要的朋友可... 目录前言一、数据存储二、处理逻辑优化前代码处理逻辑优化后的代码总结前言在实际开发中excel导入很

MyBatis-plus处理存储json数据过程

《MyBatis-plus处理存储json数据过程》文章介绍MyBatis-Plus3.4.21处理对象与集合的差异:对象可用内置Handler配合autoResultMap,集合需自定义处理器继承F... 目录1、如果是对象2、如果需要转换的是List集合总结对象和集合分两种情况处理,目前我用的MP的版本

GSON框架下将百度天气JSON数据转JavaBean

《GSON框架下将百度天气JSON数据转JavaBean》这篇文章主要为大家详细介绍了如何在GSON框架下实现将百度天气JSON数据转JavaBean,文中的示例代码讲解详细,感兴趣的小伙伴可以了解下... 目录前言一、百度天气jsON1、请求参数2、返回参数3、属性映射二、GSON属性映射实战1、类对象映

C# LiteDB处理时间序列数据的高性能解决方案

《C#LiteDB处理时间序列数据的高性能解决方案》LiteDB作为.NET生态下的轻量级嵌入式NoSQL数据库,一直是时间序列处理的优选方案,本文将为大家大家简单介绍一下LiteDB处理时间序列数... 目录为什么选择LiteDB处理时间序列数据第一章:LiteDB时间序列数据模型设计1.1 核心设计原则

Java+AI驱动实现PDF文件数据提取与解析

《Java+AI驱动实现PDF文件数据提取与解析》本文将和大家分享一套基于AI的体检报告智能评估方案,详细介绍从PDF上传、内容提取到AI分析、数据存储的全流程自动化实现方法,感兴趣的可以了解下... 目录一、核心流程:从上传到评估的完整链路二、第一步:解析 PDF,提取体检报告内容1. 引入依赖2. 封装

MySQL中查询和展示LONGBLOB类型数据的技巧总结

《MySQL中查询和展示LONGBLOB类型数据的技巧总结》在MySQL中LONGBLOB是一种二进制大对象(BLOB)数据类型,用于存储大量的二进制数据,:本文主要介绍MySQL中查询和展示LO... 目录前言1. 查询 LONGBLOB 数据的大小2. 查询并展示 LONGBLOB 数据2.1 转换为十

使用SpringBoot+InfluxDB实现高效数据存储与查询

《使用SpringBoot+InfluxDB实现高效数据存储与查询》InfluxDB是一个开源的时间序列数据库,特别适合处理带有时间戳的监控数据、指标数据等,下面详细介绍如何在SpringBoot项目... 目录1、项目介绍2、 InfluxDB 介绍3、Spring Boot 配置 InfluxDB4、I

Java整合Protocol Buffers实现高效数据序列化实践

《Java整合ProtocolBuffers实现高效数据序列化实践》ProtocolBuffers是Google开发的一种语言中立、平台中立、可扩展的结构化数据序列化机制,类似于XML但更小、更快... 目录一、Protocol Buffers简介1.1 什么是Protocol Buffers1.2 Pro