数据可视化实验一:Panda数据处理及matplotlib绘图初步

本文主要是介绍数据可视化实验一:Panda数据处理及matplotlib绘图初步,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录​​​​​​​

2024-6-17

一、请将所有含有发明家“吴峰”的发明专利的“申请日”打印出来。并将含有“吴峰”的所有发明专利条目保存到Excel中

1.1 代码实现

1.2 运行结果

二、读取文件创建城市、人口、性别比、城镇化率DataFrame对象,计算指标排名,尝试使用plot绘图

2.1 代码实现

2.2 绘制结果


一、请将所有含有发明家“吴峰”的发明专利的“申请日”打印出来。并将含有“吴峰”的所有发明专利条目保存到Excel中

1.1 代码实现

# 实验要求:请将  所有含有发明家“吴峰”的发明专利的“申请日”打印出来。并将含有“吴峰”的所有发明专利条目保存到Excel中# 导入pandas库
import pandas as pd# 从 Excel 读取数据
df = pd.read_excel("实验课数据1.xlsx")# 筛选出含有发明家“吴峰”的发明专利的“申请日”
filed_df = df[df["发明人"].str.contains("吴峰")]# 打印含有发明家“吴峰”的发明专利的“申请日”
print(filed_df[["申请日"]])# 保存含有“吴峰”的所有发明专利条目到 Excel 中
filed_df.to_excel("含有‘吴峰’的发明专利.xlsx", index=False)

1.2 运行结果

(1)原数据“实验课数据1.xlsx”

(2)筛选后的结果

(申请号不一样的原因是系统自动转换的结果)

(3)打印申请日

二、读取文件创建城市、人口、性别比、城镇化率DataFrame对象,计算指标排名,尝试使用plot绘图

2.1 代码实现

# 实验要求:读取文件创建城市、人口、性别比、城镇化率DataFrame对象,计算指标排名,尝试使用plot绘图
import pandas as pd
import matplotlib.pyplot as plt
import matplotlib.font_manager as fm# 设置字体
plt.rcParams['font.family'] = ['Arial Unicode MS']# data=pd.read_excel('江西省2021年人口普查.xlsx ', engine='openpyxl')
# 创建包含城市、人口、性别比、城镇化率的 DataFrame,江西省不属于城市,不放入考虑范围
data = {'城市': ['南昌市', '景德镇市', '萍乡市', '九江市', '新余市', '鹰潭市', '赣州市', '吉安市', '宜春市', '抚州市', '上饶市'],'年末常住人口(万人)': [643.75, 162.06, 180.59, 456.07, 120.21, 115.5, 898, 442.51, 497.11, 357.94, 643.67],'总人口性别比(女性=100)': [109.98, 107.77, 103.8, 105.56, 109.45, 107.73, 106.02, 106.73, 107.04, 107.22, 106.71],'常住人口城镇化率(%)': [78.64, 65.94, 68.77, 62.15, 74.14, 65.43, 56.35, 53.41, 57.38, 57.96, 55.31]
}df = pd.DataFrame(data)
print(df)
# 计算指标排名
df['人口排名'] = df['年末常住人口(万人)'].rank(ascending=False)
df['性别比排名'] = df['总人口性别比(女性=100)'].rank(ascending=True)
df['城镇化率排名'] = df['常住人口城镇化率(%)'].rank(ascending=False)# 可视化数据
plt.figure(figsize=(12, 6))
plt.show()# 每个部分设置不同的颜色
plt.subplot(1, 3, 1)
df[['城市', '人口排名']].set_index('城市').plot(kind='bar', color='skyblue')
plt.title('人口排名')
plt.show()plt.subplot(1, 3, 2)
df[['城市', '性别比排名']].set_index('城市').plot(kind='bar', color='salmon')
plt.title('性别比排名')
plt.show()plt.subplot(1, 3, 3)
df[['城市', '城镇化率排名']].set_index('城市').plot(kind='bar', color='lightgreen')
plt.title('城镇化率排名')plt.tight_layout()
plt.show()

2.2 绘制结果

(1)创建的DataFrame对象

(2)然后进行指标排名,绘图结果如下

I  按照人口排名

绘制结果如下,由于是根据人口排名而不是人口数量进行柱状图绘制,因此可以很直观的看出赣州市的人口数量最多;相反,鹰潭市的人口数量最少。

II 按照性别比排名

由上述图形可以看出,萍乡市的性别比排名第一,而南昌市则是最后一名。

III 按照城镇化率排名

由上图可以看出南昌市的城镇化率是全省最高的,而吉安的城镇化率则居全省末尾。

--------------------

期末加油!

这篇关于数据可视化实验一:Panda数据处理及matplotlib绘图初步的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1071235

相关文章

SQL常用操作精华之复制表、跨库查询、删除重复数据

《SQL常用操作精华之复制表、跨库查询、删除重复数据》:本文主要介绍SQL常用操作精华之复制表、跨库查询、删除重复数据,这些SQL操作涵盖了数据库开发中最常用的技术点,包括表操作、数据查询、数据管... 目录SQL常用操作精华总结表结构与数据操作高级查询技巧SQL常用操作精华总结表结构与数据操作复制表结

Redis中的数据一致性问题以及解决方案

《Redis中的数据一致性问题以及解决方案》:本文主要介绍Redis中的数据一致性问题以及解决方案,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、Redis 数据一致性问题的产生1. 单节点环境的一致性问题2. 网络分区和宕机3. 并发写入导致的脏数据4. 持

Git可视化管理工具(SourceTree)使用操作大全经典

《Git可视化管理工具(SourceTree)使用操作大全经典》本文详细介绍了SourceTree作为Git可视化管理工具的常用操作,包括连接远程仓库、添加SSH密钥、克隆仓库、设置默认项目目录、代码... 目录前言:连接Gitee or github,获取代码:在SourceTree中添加SSH密钥:Cl

Java注解之超越Javadoc的元数据利器详解

《Java注解之超越Javadoc的元数据利器详解》本文将深入探讨Java注解的定义、类型、内置注解、自定义注解、保留策略、实际应用场景及最佳实践,无论是初学者还是资深开发者,都能通过本文了解如何利用... 目录什么是注解?注解的类型内置注编程解自定义注解注解的保留策略实际用例最佳实践总结在 Java 编程

Python使用Matplotlib绘制3D曲面图详解

《Python使用Matplotlib绘制3D曲面图详解》:本文主要介绍Python使用Matplotlib绘制3D曲面图,在Python中,使用Matplotlib库绘制3D曲面图可以通过mpl... 目录准备工作绘制简单的 3D 曲面图绘制 3D 曲面图添加线框和透明度控制图形视角Matplotlib

Pandas中统计汇总可视化函数plot()的使用

《Pandas中统计汇总可视化函数plot()的使用》Pandas提供了许多强大的数据处理和分析功能,其中plot()函数就是其可视化功能的一个重要组成部分,本文主要介绍了Pandas中统计汇总可视化... 目录一、plot()函数简介二、plot()函数的基本用法三、plot()函数的参数详解四、使用pl

一文教你Python如何快速精准抓取网页数据

《一文教你Python如何快速精准抓取网页数据》这篇文章主要为大家详细介绍了如何利用Python实现快速精准抓取网页数据,文中的示例代码简洁易懂,具有一定的借鉴价值,有需要的小伙伴可以了解下... 目录1. 准备工作2. 基础爬虫实现3. 高级功能扩展3.1 抓取文章详情3.2 保存数据到文件4. 完整示例

使用Java将各种数据写入Excel表格的操作示例

《使用Java将各种数据写入Excel表格的操作示例》在数据处理与管理领域,Excel凭借其强大的功能和广泛的应用,成为了数据存储与展示的重要工具,在Java开发过程中,常常需要将不同类型的数据,本文... 目录前言安装免费Java库1. 写入文本、或数值到 Excel单元格2. 写入数组到 Excel表格

python处理带有时区的日期和时间数据

《python处理带有时区的日期和时间数据》这篇文章主要为大家详细介绍了如何在Python中使用pytz库处理时区信息,包括获取当前UTC时间,转换为特定时区等,有需要的小伙伴可以参考一下... 目录时区基本信息python datetime使用timezonepandas处理时区数据知识延展时区基本信息

Qt实现网络数据解析的方法总结

《Qt实现网络数据解析的方法总结》在Qt中解析网络数据通常涉及接收原始字节流,并将其转换为有意义的应用层数据,这篇文章为大家介绍了详细步骤和示例,感兴趣的小伙伴可以了解下... 目录1. 网络数据接收2. 缓冲区管理(处理粘包/拆包)3. 常见数据格式解析3.1 jsON解析3.2 XML解析3.3 自定义