代码随想录算法训练营Day41|背包问题、分割等和子集

2024-06-17 21:12

本文主要是介绍代码随想录算法训练营Day41|背包问题、分割等和子集,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

背包问题

二维

46. 携带研究材料(第六期模拟笔试) (kamacoder.com)

dp数组有两维,横轴表示背包重量j(0-j),纵轴表示不同物品(0-i),dp[i][j]即表示从下标为[0-i]的物品里任意取,对于重量为j的背包,最大的价值是多少。dp[i][j]的对物品i来说只有2种情况,物品i未放入或者放入,如果物品i未放入,由dp[i-1][j]可以推出,即背包容量为j,里面不放物品i的最大价值,此时dp[i][j]就是dp[i-1][j](当物品i的重量大于背包j的重量时,物品i无法放进背包中,所以背包内的价值依然和前面相同。)(参考代码随想录 (programmercarl.com))放物品时,

dp[i][j] =dp[i-1][j-weight[i]]+value[i],即当未放入i时,且重量为j-weight[i]的dp值加上i的价值。

即dp[i][j]的最终推导公式为:dp[i][j] = max(dp[i-1][j],dp[i-1][j-weight[i]]+value[i])

考虑到dp[i][j]的含义,则dp[i][0]意味着背包重量为0的价值,理应全为0,dp[i][0]的值初始化全部为0,此外当i为0时,若j<weight[0]时,dp[i][j]的值应该为0因为背包容量比编号为0的物品重量要小,而当j>=weight[0]时,dp[0][j]的值应该是value[0],因为背包容量足够放编号为0的物品(注意这里是0-1背包问题,只有放入和取出两种操作,所以这里dp[0][j]只为values[0]而不是values[0]的倍数)

由于dp的递推公式dp[i][j] = max(dp[i-1][j], dp[i-1][j-weight[i]] + value[i]),当前dp[i][j]仅与之前的元素有关,其他地方无需初始化。

vector<vector<int>>dp(weight.size(),vector<int>(bagweight + 1, 0));
for(int j = weight[0]; j <= bagweight; j++){dp[0][j] = value[0];
}

之后是确定遍历顺序,对物品和背包的遍历都是可行的。

以遍历物品为例,当j<weight[i]时,无法将物品i放入,则dp[i][j] = dp[i-1][j],否则为上述的dp公式。

for(int i = 1; i < weight.size();i++){for(int j = 0; j <= bagweight; j ++){if(j < weight[i])dp[i][j] = dp[i-1][j];elsedp[i][j] = max(dp[i][j-1],dp[i-1][j-weight[i]]+value[i]);}
}

遍历背包的话

for(int j = 0; j <= bagweight; j++){for(int i = 0; i < weight.size(); i++){if(j < weight[i])dp[i][j] = dp[i-1][j];elsedp[i][j] = max(dp[i-1][j],dp[i-1][j-value[i]] + value[i]);}
}

只是变更一下顺序,其他一样(对本题是这样的)。

之后就是返回dp数组的最大值即可。

代码随想录的代码如下:

//二维dp数组实现
#include <bits/stdc++.h>
using namespace std;int n, bagweight;// bagweight代表行李箱空间
void solve() {vector<int> weight(n, 0); // 存储每件物品所占空间vector<int> value(n, 0);  // 存储每件物品价值for(int i = 0; i < n; ++i) {cin >> weight[i];}for(int j = 0; j < n; ++j) {cin >> value[j];}// dp数组, dp[i][j]代表行李箱空间为j的情况下,从下标为[0, i]的物品里面任意取,能达到的最大价值vector<vector<int>> dp(weight.size(), vector<int>(bagweight + 1, 0));// 初始化, 因为需要用到dp[i - 1]的值// j < weight[0]已在上方被初始化为0// j >= weight[0]的值就初始化为value[0]for (int j = weight[0]; j <= bagweight; j++) {dp[0][j] = value[0];}for(int i = 1; i < weight.size(); i++) { // 遍历科研物品for(int j = 0; j <= bagweight; j++) { // 遍历行李箱容量// 如果装不下这个物品,那么就继承dp[i - 1][j]的值if (j < weight[i]) dp[i][j] = dp[i - 1][j];// 如果能装下,就将值更新为 不装这个物品的最大值 和 装这个物品的最大值 中的 最大值// 装这个物品的最大值由容量为j - weight[i]的包任意放入序号为[0, i - 1]的最大值 + 该物品的价值构成else dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - weight[i]] + value[i]);}}cout << dp[weight.size() - 1][bagweight] << endl;
}int main() {while(cin >> n >> bagweight) {solve();}return 0;

算法使用两层嵌套循环来补全dp数组,外层执行weight.size()次,即n次,内层执行了bagweight+1次,定为m次,时间复杂度为O(n*m),空间复杂度使用了二维数组,O(n*m)。

一维

滚动数组,不太理解,周末看看。

代码随想录 (programmercarl.com)

// 一维dp数组实现
#include <iostream>
#include <vector>
using namespace std;int main() {// 读取 M 和 Nint M, N;cin >> M >> N;vector<int> costs(M);vector<int> values(M);for (int i = 0; i < M; i++) {cin >> costs[i];}for (int j = 0; j < M; j++) {cin >> values[j];}// 创建一个动态规划数组dp,初始值为0vector<int> dp(N + 1, 0);// 外层循环遍历每个类型的研究材料for (int i = 0; i < M; ++i) {// 内层循环从 N 空间逐渐减少到当前研究材料所占空间for (int j = N; j >= costs[i]; --j) {// 考虑当前研究材料选择和不选择的情况,选择最大值dp[j] = max(dp[j], dp[j - costs[i]] + values[i]);}}// 输出dp[N],即在给定 N 行李空间可以携带的研究材料最大价值cout << dp[N] << endl;return 0;
}

分割等和子集

416. 分割等和子集 - 力扣(LeetCode)

        本来想着直接排序然后依次加入最小的数,然后发现果然有错[1,1,2,2]。

        以[1,5,11,5]这个题例为例,可以抽象为 一个背包容量为11,剩余元素(只能使用1次)是否能装满这个容量为11的背包。0-1背包问题。

        DP数组含义,容量为j的最大价值为dp[j],当dp[target] == target时,表示能装满(此处的target为数组sum的一半,因为两个子集和要相等),即能实现分割等和子集。

        背包容量从0到10001,因为数字总和不超过20000,则target<=10000,dp数组长度到达10001就够了。

        dp[j] = max(dp[j],dp[j - nums[i]]+ nums[i]);

        对dp的初始化,由于nums数组全为正整数,可以全部初始化为0,(若存在负数,则应初始化为INT_MIN)。

遍历顺序物品遍历在外,背包遍历在内层,且内层倒序遍历。参考代码随想录 (programmercarl.com)

最后需考虑,当dp[target] == target时,返回true,否则为false。

此外,若sum%2 == 1,则表明sum为奇数,不存在两个相等的子数组和,return false。剪枝。

class Solution {
public:bool canPartition(vector<int>& nums) {int sum = 0; for(auto x:nums){sum += x; // 计算数组元素的总和}// 如果总和是奇数,那么不能平分,直接返回falseif(sum%2 == 1)return false;// 计算目标和,即每个子集应该达到的和const int target = sum/2;// 初始化动态规划数组dp,大小为10001,初值都为0// dp[j]表示是否能够从前i个数字中选取一些数字,使得这些数字的和为jvector<int>dp(10001, 0);// 遍历数组中的每个数字for(int i = 0; i < nums.size();i++){// 从大到小遍历目标和及其以下的值for(int j = target; j >= nums[i]; j--){// 更新dp[j],选取或不选取当前数字,取两种情况的最大值dp[j] = max(dp[j],dp[j - nums[i]] +nums[i]);}}// 如果dp[target]等于target,说明可以找到和为target的子集,返回trueif(dp[target] == target)return true;return false;}
};

算法的时间复杂度为O(n^2),空间复杂度为O(n)。

这篇关于代码随想录算法训练营Day41|背包问题、分割等和子集的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1070496

相关文章

Vue3绑定props默认值问题

《Vue3绑定props默认值问题》使用Vue3的defineProps配合TypeScript的interface定义props类型,并通过withDefaults设置默认值,使组件能安全访问传入的... 目录前言步骤步骤1:使用 defineProps 定义 Props步骤2:设置默认值总结前言使用T

Web服务器-Nginx-高并发问题

《Web服务器-Nginx-高并发问题》Nginx通过事件驱动、I/O多路复用和异步非阻塞技术高效处理高并发,结合动静分离和限流策略,提升性能与稳定性... 目录前言一、架构1. 原生多进程架构2. 事件驱动模型3. IO多路复用4. 异步非阻塞 I/O5. Nginx高并发配置实战二、动静分离1. 职责2

Redis实现高效内存管理的示例代码

《Redis实现高效内存管理的示例代码》Redis内存管理是其核心功能之一,为了高效地利用内存,Redis采用了多种技术和策略,如优化的数据结构、内存分配策略、内存回收、数据压缩等,下面就来详细的介绍... 目录1. 内存分配策略jemalloc 的使用2. 数据压缩和编码ziplist示例代码3. 优化的

解决升级JDK报错:module java.base does not“opens java.lang.reflect“to unnamed module问题

《解决升级JDK报错:modulejava.basedoesnot“opensjava.lang.reflect“tounnamedmodule问题》SpringBoot启动错误源于Jav... 目录问题描述原因分析解决方案总结问题描述启动sprintboot时报以下错误原因分析编程异js常是由Ja

Python 基于http.server模块实现简单http服务的代码举例

《Python基于http.server模块实现简单http服务的代码举例》Pythonhttp.server模块通过继承BaseHTTPRequestHandler处理HTTP请求,使用Threa... 目录测试环境代码实现相关介绍模块简介类及相关函数简介参考链接测试环境win11专业版python

Python从Word文档中提取图片并生成PPT的操作代码

《Python从Word文档中提取图片并生成PPT的操作代码》在日常办公场景中,我们经常需要从Word文档中提取图片,并将这些图片整理到PowerPoint幻灯片中,手动完成这一任务既耗时又容易出错,... 目录引言背景与需求解决方案概述代码解析代码核心逻辑说明总结引言在日常办公场景中,我们经常需要从 W

使用Spring Cache本地缓存示例代码

《使用SpringCache本地缓存示例代码》缓存是提高应用程序性能的重要手段,通过将频繁访问的数据存储在内存中,可以减少数据库访问次数,从而加速数据读取,:本文主要介绍使用SpringCac... 目录一、Spring Cache简介核心特点:二、基础配置1. 添加依赖2. 启用缓存3. 缓存配置方案方案

MySQL 表空却 ibd 文件过大的问题及解决方法

《MySQL表空却ibd文件过大的问题及解决方法》本文给大家介绍MySQL表空却ibd文件过大的问题及解决方法,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考... 目录一、问题背景:表空却 “吃满” 磁盘的怪事二、问题复现:一步步编程还原异常场景1. 准备测试源表与数据

解决Nginx启动报错Job for nginx.service failed because the control process exited with error code问题

《解决Nginx启动报错Jobfornginx.servicefailedbecausethecontrolprocessexitedwitherrorcode问题》Nginx启... 目录一、报错如下二、解决原因三、解决方式总结一、报错如下Job for nginx.service failed bec

SysMain服务可以关吗? 解决SysMain服务导致的高CPU使用率问题

《SysMain服务可以关吗?解决SysMain服务导致的高CPU使用率问题》SysMain服务是超级预读取,该服务会记录您打开应用程序的模式,并预先将它们加载到内存中以节省时间,但它可能占用大量... 在使用电脑的过程中,CPU使用率居高不下是许多用户都遇到过的问题,其中名为SysMain的服务往往是罪魁