如何高效使用大型语言模型 LLMs 初学者版本 简单易上手

2024-06-17 18:12

本文主要是介绍如何高效使用大型语言模型 LLMs 初学者版本 简单易上手,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

第一条也是最重要的一条规则是

永远不要要求LLM提供你无法自己验证的信息,

或让它完成你无法验证其正确性的任务。

图片

唯一例外的情况是那些无关紧要的任务, 例如,让大型语言模型提供公寓装修灵感之类的是可以的 。
首先请看两个范例

  • 不佳示范:“使用文献综述最佳实践,总结过去十年乳腺癌的研究成果。”

    (这是一个不够好的请求,因为我们无法直接检查它是否正确地总结了文献。)

  • 较好的示范:“给我一份过去 10 年关于乳腺癌研究的顶级综述文章列表。”

(这个提问比较好,因为你可以验证这些文章来源是否存在,并自己核对它们,因为这些都是权威专家撰写的。)

👇下面讲讲写提示词的技巧

让大型语言模型为您编写代码或查找相关信息非常简单,但回复的质量可能会有很大差异 ,我们可以从以下几方面来改善LLMs的输出质量。

图片设置上下文SET THE CONTEXT

  • 明确告诉 LLM 它应该使用哪些信息

Tell the LLM explicitly what information it should be using

  • 使用术语和符号 以引导LLM进入正确语境。

Use terminology and notation that biases the LLM towards the right context

如果你对如何处理某个请求有想法,告诉LLM采用该方法。

举个例子 “解这个不等式。”

"使用Cauchy-Schwarz定理求解这个不等式,然后应用完全平方法。"这些模型在语言方面比我们想象的更先进。哪怕极其模糊的指引有时也会有所帮助。

图片

图片要具体 BE SPECIFIC

图片我们用的大语言模型不是谷歌搜索。你不必担心是否有网站讨论了你的确切问题。

再看个例子 “如何解涉及二次项的同时方程组?”

具体请求示范:“求解x=(1/2)(a+b)和y=(1/3)(a2+ab+b2)关于a和b的方程。”

图片

图片还需要定义输出格式!DEFINE YOUR OUTPUT FORMAT

充分利用LLM的灵活性,以最适合你的方式格式化输出,例如: 代码 数学公式 论文体 教程 项目符号 你甚至可以要求它生成代码来生成: 表格 图形 图表等格式都可以。

注意⚠️ 大模型生成答案还那仅仅只是开始。那么我们就需要

  • 二次验证回答 YOU NEED TO VALIDATE THE RESPONSE

你需要验证它的应答,包括: 寻找矛盾之处 谷歌搜索响应中的术语以获取支持性资料 有时候还需要自己生成代码来测试它提出的论点。

LLM常常会出现奇怪的错误,与它们表现出的专业水平不相符。例如,LLM可能会提及一个极其高级的数学概念,却在简单的代数运算上出错。这就是为什么你必须检查一切的原因。

利用错误产生反馈: 如果你在答案中发现错误或矛盾,要求LLM解释原因, 如果LLM生成有bug的代码,复制粘贴错误信息到LLM窗口并要求修复。

  • *利用错误生成反馈* USE THE ERRORS TO GENERATE FEEDBACK

如果你在响应中发现错误或矛盾,要求LLM解释原因 如果LLM生成有bug的代码,复制粘贴错误信息到LLM窗口并要求修复。

  • 还有一个超好用的方法就是——多问几次!

ASK MORE THAN ONCE

LLM是随机的。有时,简单地新开一个窗口并再次提问,可能会得到更好的答复。

图片

  • 还可以使用多个模型 USE MORE THAN ONE LLM

我目前使用Bing AI、GPT-4、GPT-3.5和Gemini AI,具体取决于我的需求。它们各有优缺点。根据我的经验,对于同一个数学问题向GPT-4和Gemini AI提问以获得不同视角是很好的做法。Bing AI擅长网络搜索。GPT-4比GPT-3.5智能得多(就像90分学生比10分学生一样),但目前获取更加困难.

图片

关于参考资料 - 这是LLM特别薄弱的一个方面。有时LLM给出的参考资料确实存在,有时则并不存在。然而,这些虚假的参考资料并非完全无用。根据我的经验,虚假参考资料中的词语通常与该领域的真实术语和研究人员有关。因此,谷歌搜索这些术语通常可以让你更接近所需的信息。

图片

保 持 适 度 期 望

虽然LLMs可以提高工作效率,但不应期望过高,特别是在需要精确验证的学术工作中。

有很多不现实的说法,LLM可以使我们的生产力提高10倍或100倍。根据我的经验,除非不需要双重检查任何工作,否则这种加速效果难以实现,而作为一名专业人士,不负责任地这样做是不可取的。

通过这些策略,我们可以更高效地将LLMs融入我们的工作流程中 最后祝大家拥有适合自己的AI小助手!

图片

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

这篇关于如何高效使用大型语言模型 LLMs 初学者版本 简单易上手的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1070180

相关文章

Nginx中配置使用非默认80端口进行服务的完整指南

《Nginx中配置使用非默认80端口进行服务的完整指南》在实际生产环境中,我们经常需要将Nginx配置在其他端口上运行,本文将详细介绍如何在Nginx中配置使用非默认端口进行服务,希望对大家有所帮助... 目录一、为什么需要使用非默认端口二、配置Nginx使用非默认端口的基本方法2.1 修改listen指令

Python WebSockets 库从基础到实战使用举例

《PythonWebSockets库从基础到实战使用举例》WebSocket是一种全双工、持久化的网络通信协议,适用于需要低延迟的应用,如实时聊天、股票行情推送、在线协作、多人游戏等,本文给大家介... 目录1. 引言2. 为什么使用 WebSocket?3. 安装 WebSockets 库4. 使用 We

python中的显式声明类型参数使用方式

《python中的显式声明类型参数使用方式》文章探讨了Python3.10+版本中类型注解的使用,指出FastAPI官方示例强调显式声明参数类型,通过|操作符替代Union/Optional,可提升代... 目录背景python函数显式声明的类型汇总基本类型集合类型Optional and Union(py

Java使用正则提取字符串中的内容的详细步骤

《Java使用正则提取字符串中的内容的详细步骤》:本文主要介绍Java中使用正则表达式提取字符串内容的方法,通过Pattern和Matcher类实现,涵盖编译正则、查找匹配、分组捕获、数字与邮箱提... 目录1. 基础流程2. 关键方法说明3. 常见场景示例场景1:提取所有数字场景2:提取邮箱地址4. 高级

使用SpringBoot+InfluxDB实现高效数据存储与查询

《使用SpringBoot+InfluxDB实现高效数据存储与查询》InfluxDB是一个开源的时间序列数据库,特别适合处理带有时间戳的监控数据、指标数据等,下面详细介绍如何在SpringBoot项目... 目录1、项目介绍2、 InfluxDB 介绍3、Spring Boot 配置 InfluxDB4、I

使用Java读取本地文件并转换为MultipartFile对象的方法

《使用Java读取本地文件并转换为MultipartFile对象的方法》在许多JavaWeb应用中,我们经常会遇到将本地文件上传至服务器或其他系统的需求,在这种场景下,MultipartFile对象非... 目录1. 基本需求2. 自定义 MultipartFile 类3. 实现代码4. 代码解析5. 自定

使用Python实现无损放大图片功能

《使用Python实现无损放大图片功能》本文介绍了如何使用Python的Pillow库进行无损图片放大,区分了JPEG和PNG格式在放大过程中的特点,并给出了示例代码,JPEG格式可能受压缩影响,需先... 目录一、什么是无损放大?二、实现方法步骤1:读取图片步骤2:无损放大图片步骤3:保存图片三、示php

使用Python实现一个简易计算器的新手指南

《使用Python实现一个简易计算器的新手指南》计算器是编程入门的经典项目,它涵盖了变量、输入输出、条件判断等核心编程概念,通过这个小项目,可以快速掌握Python的基础语法,并为后续更复杂的项目打下... 目录准备工作基础概念解析分步实现计算器第一步:获取用户输入第二步:实现基本运算第三步:显示计算结果进

Go语言连接MySQL数据库执行基本的增删改查

《Go语言连接MySQL数据库执行基本的增删改查》在后端开发中,MySQL是最常用的关系型数据库之一,本文主要为大家详细介绍了如何使用Go连接MySQL数据库并执行基本的增删改查吧... 目录Go语言连接mysql数据库准备工作安装 MySQL 驱动代码实现运行结果注意事项Go语言执行基本的增删改查准备工作

C#高效实现Word文档内容查找与替换的6种方法

《C#高效实现Word文档内容查找与替换的6种方法》在日常文档处理工作中,尤其是面对大型Word文档时,手动查找、替换文本往往既耗时又容易出错,本文整理了C#查找与替换Word内容的6种方法,大家可以... 目录环境准备方法一:查找文本并替换为新文本方法二:使用正则表达式查找并替换文本方法三:将文本替换为图