单层感知器实现逻辑与运算

2024-06-17 13:58

本文主要是介绍单层感知器实现逻辑与运算,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

感知器是一个用来做模式识别最简单的模型,由于仅有一个神经元,所以只能用来处理线性可分的两类模式识别。

模型

w1
w2
w3
wn
x1
x2
x3
xn
b
激活函数f
输出y

u = ∑ i = 1 i = n w i x i + b u = \sum_{i=1}^{i=n} w_{i}x_{i} + b u=i=1i=nwixi+b

y = s g n ( u ) y = sgn (u) y=sgn(u)

sgn阶跃函数,当u>=0时,y=1;当u<0时,y=0。

设输入为x={x1,x2,…,xn},
若:
y = f ( w , x , b ) = 1 y=f(w,x,b) =1 y=f(w,x,b)=1则认为x属于类L1。
若:
y = f ( w , x , b ) = 0 y=f(w,x,b) =0 y=f(w,x,b)=0则认为x属于类L2。

分类原理就是通过一种算法,不断调整w、b的参数,使得对应输入样本满足期望的输出。

纠错学习

设输入为x,经过神经元后得到输出y,称y为实际输出或目标输出,对于输入x其实我们希望输出为d,称d为期望输出。期望输出与目标输出存在误差,用e表示。
e ( n ) = y ( n ) − d ( n ) e(n) = y(n) - d(n) e(n)=y(n)d(n)
通过不断的调整神经元内部参数(w,b)使得误差e最小化,就完成了学习的过程。每次调整的量可表示为:
Δ w ( n ) = η e ( n ) x ( n ) \Delta w(n) = \eta e(n)x(n) Δw(n)=ηe(n)x(n)
Δ b ( n ) = η e ( n ) \Delta b(n) = \eta e(n) Δb(n)=ηe(n)
调整后参数可表示为:
w ( n + 1 ) = w ( n ) + Δ w ( n ) w(n+1) = w(n)+ \Delta w(n) w(n+1)=w(n)+Δw(n)
b ( n + 1 ) = b ( n ) + Δ b ( n ) b(n+1) = b(n)+\Delta b(n) b(n+1)=b(n)+Δb(n)

代码实例

逻辑与的规则为:

0 and 0 is 0
0 and 1 is 0
1 and 0 is 0
1 and 1 is 1

即当输入x = (1,1),期望输出为1,其余输入,期望输出为0
设感知器有两个输入端x1和x2 ,则:

u = w 1 x 1 + w 2 x 2 + b u = w_{1}x_{1} + w_{2}x_{2}+b u=w1x1+w2x2+b
实际输出为:
y = s g n ( u ) ( u > = 0 , y = 1 ; u < 0 , y = 0 ) y= sgn(u) (u>=0,y=1;u<0,y=0) y=sgn(u)u>=0,y=1;u<0,y=0

通过多次迭代,通过不断的调整w1、w2、b参数,使得误差e逐渐减小。即实际输出不断逼近期望值。

import numpy as np
import matplotlib.pyplot as plt# 定义输入数据,有4种输入情况
x = np.array([[0,0],[0,1],[1,0],[1,1]])# 输出期望值
d = np.array([0,0,0,1])# 初始化w、b参数,w1=0.2,w2=0.6,b=1;
w = np.array([[0.2,0.6]])
b = 1;# 定义学习速率
t = 0.03# 定义sgn函数
def step(a):if a>0:return 1else:return 0# w、b更新
# dat 输入数据
# lable 输入对应的期望
def updatePar(dat,lable):global w,b# 实际输出 y = WX+b ,WX为矩阵相乘y = step(np.dot(w,np.array(dat).T) + b)# 计算实际输出与期望之差e = lable - y# 调整w、b参数w = w + t*e*datb = b + t*e
# 训练全部输入
def train():for index in range(4):updatePar(x[index],d[index])# 准确度
accuracy = []
# 测试
# 返回0~1之间的数,等于1时表示准确率100%
def test():k = 0;for index in range(4):y = step(np.dot(w,np.array(x[index]).T) + b)if (y == d[index]):k = k + 1accuracy.append(k*0.25)
# 训练、测试
for index in range(30):train()test()# 打印最终w,b的值
print(str(w) +"---"+ str(b))plt.rcParams['font.sans-serif']=['SimHei']
plt.rcParams['axes.unicode_minus'] = False
plt.xlabel("迭代次数")
plt.ylabel("准确率")
plt.plot(accuracy)
plt.show()

结果:

w=[[ 0.05  0.12]]   b=-0.14
w1 = 0.05
w2 = 0.12

在这里插入图片描述

这篇关于单层感知器实现逻辑与运算的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1069633

相关文章

C++中unordered_set哈希集合的实现

《C++中unordered_set哈希集合的实现》std::unordered_set是C++标准库中的无序关联容器,基于哈希表实现,具有元素唯一性和无序性特点,本文就来详细的介绍一下unorder... 目录一、概述二、头文件与命名空间三、常用方法与示例1. 构造与析构2. 迭代器与遍历3. 容量相关4

C++中悬垂引用(Dangling Reference) 的实现

《C++中悬垂引用(DanglingReference)的实现》C++中的悬垂引用指引用绑定的对象被销毁后引用仍存在的情况,会导致访问无效内存,下面就来详细的介绍一下产生的原因以及如何避免,感兴趣... 目录悬垂引用的产生原因1. 引用绑定到局部变量,变量超出作用域后销毁2. 引用绑定到动态分配的对象,对象

SpringBoot基于注解实现数据库字段回填的完整方案

《SpringBoot基于注解实现数据库字段回填的完整方案》这篇文章主要为大家详细介绍了SpringBoot如何基于注解实现数据库字段回填的相关方法,文中的示例代码讲解详细,感兴趣的小伙伴可以了解... 目录数据库表pom.XMLRelationFieldRelationFieldMapping基础的一些代

Java HashMap的底层实现原理深度解析

《JavaHashMap的底层实现原理深度解析》HashMap基于数组+链表+红黑树结构,通过哈希算法和扩容机制优化性能,负载因子与树化阈值平衡效率,是Java开发必备的高效数据结构,本文给大家介绍... 目录一、概述:HashMap的宏观结构二、核心数据结构解析1. 数组(桶数组)2. 链表节点(Node

Java AOP面向切面编程的概念和实现方式

《JavaAOP面向切面编程的概念和实现方式》AOP是面向切面编程,通过动态代理将横切关注点(如日志、事务)与核心业务逻辑分离,提升代码复用性和可维护性,本文给大家介绍JavaAOP面向切面编程的概... 目录一、AOP 是什么?二、AOP 的核心概念与实现方式核心概念实现方式三、Spring AOP 的关

Python实现字典转字符串的五种方法

《Python实现字典转字符串的五种方法》本文介绍了在Python中如何将字典数据结构转换为字符串格式的多种方法,首先可以通过内置的str()函数进行简单转换;其次利用ison.dumps()函数能够... 目录1、使用json模块的dumps方法:2、使用str方法:3、使用循环和字符串拼接:4、使用字符

Linux下利用select实现串口数据读取过程

《Linux下利用select实现串口数据读取过程》文章介绍Linux中使用select、poll或epoll实现串口数据读取,通过I/O多路复用机制在数据到达时触发读取,避免持续轮询,示例代码展示设... 目录示例代码(使用select实现)代码解释总结在 linux 系统里,我们可以借助 select、

Linux挂载linux/Windows共享目录实现方式

《Linux挂载linux/Windows共享目录实现方式》:本文主要介绍Linux挂载linux/Windows共享目录实现方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地... 目录文件共享协议linux环境作为服务端(NFS)在服务器端安装 NFS创建要共享的目录修改 NFS 配

通过React实现页面的无限滚动效果

《通过React实现页面的无限滚动效果》今天我们来聊聊无限滚动这个现代Web开发中不可或缺的技术,无论你是刷微博、逛知乎还是看脚本,无限滚动都已经渗透到我们日常的浏览体验中,那么,如何优雅地实现它呢?... 目录1. 早期的解决方案2. 交叉观察者:IntersectionObserver2.1 Inter

Spring Gateway动态路由实现方案

《SpringGateway动态路由实现方案》本文主要介绍了SpringGateway动态路由实现方案,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随... 目录前沿何为路由RouteDefinitionRouteLocator工作流程动态路由实现尾巴前沿S