轨迹优化 | 图解欧氏距离场与梯度场算法(附ROS C++/Python实现)

2024-06-17 12:20

本文主要是介绍轨迹优化 | 图解欧氏距离场与梯度场算法(附ROS C++/Python实现),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

  • 0 专栏介绍
  • 1 什么是距离场?
  • 2 欧氏距离场计算原理
  • 3 双线性插值与欧式梯度场
  • 4 仿真实现
    • 4.1 ROS C++实现
    • 4.2 Python实现

0 专栏介绍

🔥课程设计、毕业设计、创新竞赛、学术研究必备!本专栏涉及更高阶的运动规划算法实战:曲线生成与轨迹优化、碰撞模型与检测、多智能体群控、深度强化学习运动规划、社会性导航、全覆盖路径规划等内容,每个模型都包含代码实现加深理解。

🚀详情:运动规划实战进阶


1 什么是距离场?

距离场(Distance Field)也称为距离变换(Distance Transform),在图像处理和模式识别中是一种重要工具,其核心思想是将图像中每个像素点的值表示为到最近的目标像素的距离度量,更高维的情况依次类推。在计算机视觉领域,距离场是图像分割和配准的基础,在运动规划中则常用于地图建模(广义Voronoi图计算)和轨迹梯度优化。

在这里插入图片描述

给定点集 G \mathcal{G} G和其上的目标点集 Q ⊆ G Q\subseteq \mathcal{G} QG,可以定义函数

D I ( p ) = min ⁡ q ∈ G ( d ( p , q ) + I ( q ) ) \mathcal{D} _I\left( p \right) =\min _{q\in \mathcal{G}}\left( d\left( p,q \right) +I\left( q \right) \right) DI(p)=qGmin(d(p,q)+I(q))

计算任意一点 p p p Q Q Q的最近距离,其中距离度量 d ( ⋅ , ⋅ ) d\left( \cdot ,\cdot \right) d(,)定义了距离场的属性,指示函数

I Q ( q ) = { 0 , i f q ∈ Q ∞ , o t h e r w i s e I_Q\left( q \right) =\begin{cases} 0, \mathrm{if} q\in Q\\ \infty , \mathrm{otherwise}\\\end{cases} IQ(q)={0,ifqQ,otherwise

常用的 d ( ⋅ , ⋅ ) d\left( \cdot ,\cdot \right) d(,)

  • 欧氏距离,此时称为欧氏距离变换(Euclidean Distance Transform, EDT)
  • 曼哈顿距离,此时称为曼哈顿距离变换(Manhattan Distance Transform, MDT)
  • 切比雪夫距离,此时称为切比雪夫距离变换(Chebyshev Distance Transform, CDT)

2 欧氏距离场计算原理

n n n维距离场可以通过一维距离场迭代计算得到,因此只需要讨论一维EDT的计算即可。如下图左侧所示为初始计算轴的EDT计算,右侧所示为更一般的情况,此时障碍物处的采样函数叠加了前轴计算信息。

在这里插入图片描述

注意到 O \mathcal{O} O定义了一系列以障碍物 q ∈ O q\in \mathcal{O} qO为顶点的抛物线,而 ∀ p ∈ G \forall p\in \mathcal{G} pG在系列抛物线形成的下包络的投影组成了距离场 D f ( p ) \mathcal{D} _f\left( p \right) Df(p),而下包络的计算与抛物线交点有关。联立两条抛物线 ( s − q ) 2 + f ( q ) = ( s − r ) 2 + f ( r ) \left( s-q \right) ^2+f\left( q \right) =\left( s-r \right) ^2+f\left( r \right) (sq)2+f(q)=(sr)2+f(r)可得

s = ( f ( r ) + r 2 ) − ( f ( q ) + q 2 ) 2 r − 2 q s=\frac{\left( f\left( r \right) +r^2 \right) -\left( f\left( q \right) +q^2 \right)}{2r-2q} s=2r2q(f(r)+r2)(f(q)+q2)

即任意两条抛物线有且仅有一个交点 s s s。设 K \mathcal{K} K为实际组成下包络的抛物线集合, v ( k ) v\left( k \right) v(k)表示其中第 k k k条抛物线的顶点, z ( k ) z\left( k \right) z(k)表示第 k k k条和第 k − 1 k-1 k1条抛物线的交点,区间 [ z ( k ) , z ( k + 1 ) ) \left[ z\left( k \right) ,z\left( k+1 \right) \right) [z(k),z(k+1))表示第 k k k条抛物线的下包络范围。在遍历求解下包络过程中,对于新的抛物线 e e e,其与 K \mathcal{K} K中最新的一条抛物线 k k k的交点 s s s有两种情况:

  • s > z ( k ) s>z\left( k \right) s>z(k),则将 e e e添加到 K \mathcal{K} K中并更新 v ( k ) v\left( k \right) v(k) z ( k ) z\left( k \right) z(k)
  • s ⩽ z ( k ) s\leqslant z\left( k \right) sz(k),则第 k k k条抛物线不参与构成下包络,应从 K \mathcal{K} K中删除并重新计算 e e e与新的第 k k k条抛物线的交点直至 s s s z ( k ) z(k) z(k)右侧;

算法流程如表所示

在这里插入图片描述

3 双线性插值与欧式梯度场

在求解梯度过程中,需要计算离散距离场的线性插值函数。以二维环境的双线性插值为例,设已知离散空间有四点坐标为 A ( x 1 , y 1 ) A\left( x_1,y_1 \right) A(x1,y1) B ( x 2 , y 1 ) B\left( x_2,y_1 \right) B(x2,y1) C ( x 1 , y 2 ) C\left( x_1,y_2 \right) C(x1,y2) D ( x 2 , y 2 ) D\left( x_2,y_2 \right) D(x2,y2),对其中任意一点 P P P,首先在 x x x方向上插值

{ f ( R 1 ) = f ( x , y 1 ) = x 2 − x x 2 − x 1 f ( A ) + x − x 1 x 2 − x 1 f ( B ) f ( R 2 ) = f ( x , y 2 ) = x 2 − x x 2 − x 1 f ( C ) + x − x 1 x 2 − x 1 f ( D ) \begin{cases} f\left( R_1 \right) =f\left( x,y_1 \right) =\frac{x_2-x}{x_2-x_1}f\left( A \right) +\frac{x-x_1}{x_2-x_1}f\left( B \right)\\ f\left( R_2 \right) =f\left( x,y_2 \right) =\frac{x_2-x}{x_2-x_1}f\left( C \right) +\frac{x-x_1}{x_2-x_1}f\left( D \right)\\\end{cases} {f(R1)=f(x,y1)=x2x1x2xf(A)+x2x1xx1f(B)f(R2)=f(x,y2)=x2x1x2xf(C)+x2x1xx1f(D)

再基于插值点 R 1 R_1 R1 R 2 R_2 R2进行 y y y方向的插值

f ( P ) = f ( x , y ) = y 2 − y y 2 − y 1 f ( R 1 ) + y − y 1 y 2 − y 1 f ( R 2 ) f\left( P \right) =f\left( x,y \right) =\frac{y_2-y}{y_2-y_1}f\left( R_1 \right) +\frac{y-y_1}{y_2-y_1}f\left( R_2 \right) f(P)=f(x,y)=y2y1y2yf(R1)+y2y1yy1f(R2)

展开可得矩阵形式

f ( x , y ) = 1 ( x 2 − x 1 ) ( y 2 − y 1 ) [ x 2 − x x − x 1 ] T [ f ( A ) f ( C ) f ( B ) f ( D ) ] [ y 2 − y y − y 1 ] f\left( x,y \right) =\frac{1}{\left( x_2-x_1 \right) \left( y_2-y_1 \right)}\left[ \begin{array}{c} x_2-x\\ x-x_1\\\end{array} \right] ^T\left[ \begin{matrix} f\left( A \right)& f\left( C \right)\\ f\left( B \right)& f\left( D \right)\\\end{matrix} \right] \left[ \begin{array}{c} y_2-y\\ y-y_1\\\end{array} \right] f(x,y)=(x2x1)(y2y1)1[x2xxx1]T[f(A)f(B)f(C)f(D)][y2yyy1]

在这里插入图片描述

对于离散栅格坐标而言, x 2 − x 1 = y 2 − y 1 = 1 x_2-x_1=y_2-y_1=1 x2x1=y2y1=1,设 Δ x = x − x 1 \varDelta x=x-x_1 Δx=xx1 Δ y = y − y 1 \varDelta y=y-y_1 Δy=yy1,则插值函数简化为

f ( Δ x , Δ y ) = [ 1 − Δ x Δ x ] T [ f ( A ) f ( C ) f ( B ) f ( D ) ] [ 1 − Δ y Δ y ] f\left( \varDelta x,\varDelta y \right) =\left[ \begin{array}{c} 1-\varDelta x\\ \varDelta x\\\end{array} \right] ^T\left[ \begin{matrix} f\left( A \right)& f\left( C \right)\\ f\left( B \right)& f\left( D \right)\\\end{matrix} \right] \left[ \begin{array}{c} 1-\varDelta y\\ \varDelta y\\\end{array} \right] f(Δx,Δy)=[1ΔxΔx]T[f(A)f(B)f(C)f(D)][1ΔyΔy]

则函数 f f f在任意一点的梯度为

∇ f ( Δ x , Δ y ) = [ ∂ f ( Δ x , Δ y ) ∂ Δ x ∂ f ( Δ x , Δ y ) ∂ Δ y ] = [ [ − 1 1 ] T [ f ( A ) f ( C ) f ( B ) f ( D ) ] [ 1 − Δ y Δ y ] [ 1 − Δ x Δ x ] T [ f ( A ) f ( C ) f ( B ) f ( D ) ] [ − 1 1 ] ] \nabla f\left( \varDelta x,\varDelta y \right) =\left[ \begin{array}{c} \frac{\partial f\left( \varDelta x,\varDelta y \right)}{\partial \varDelta x}\\ \frac{\partial f\left( \varDelta x,\varDelta y \right)}{\partial \varDelta y}\\\end{array} \right] =\left[ \begin{array}{c} \left[ \begin{array}{c} -1\\ 1\\\end{array} \right] ^T\left[ \begin{matrix} f\left( A \right)& f\left( C \right)\\ f\left( B \right)& f\left( D \right)\\\end{matrix} \right] \left[ \begin{array}{c} 1-\varDelta y\\ \varDelta y\\\end{array} \right]\\ \left[ \begin{array}{c} 1-\varDelta x\\ \varDelta x\\\end{array} \right] ^T\left[ \begin{matrix} f\left( A \right)& f\left( C \right)\\ f\left( B \right)& f\left( D \right)\\\end{matrix} \right] \left[ \begin{array}{c} -1\\ 1\\\end{array} \right]\\\end{array} \right] f(Δx,Δy)=[Δxf(Δx,Δy)Δyf(Δx,Δy)]=[11]T[f(A)f(B)f(C)f(D)][1ΔyΔy][1ΔxΔx]T[f(A)f(B)f(C)f(D)][11]

4 仿真实现

4.1 ROS C++实现

核心代码如下所示

GradientLayer::updateCosts(nav2_costmap_2d::Costmap2D & master_grid, int min_i, int min_j,int max_i,int max_j)
{if (!enabled_) {return;}unsigned char * master_array = master_grid.getCharMap();unsigned int size_x = master_grid.getSizeInCellsX(), size_y = master_grid.getSizeInCellsY();// Fixing window coordinates with map size if necessary.min_i = std::max(0, min_i);min_j = std::max(0, min_j);max_i = std::min(static_cast<int>(size_x), max_i);max_j = std::min(static_cast<int>(size_y), max_j);// Simply computing one-by-one cost per each cellint gradient_index;for (int j = min_j; j < max_j; j++) {// Reset gradient_index each time when reaching the end of re-calculated window// by OY axis.gradient_index = 0;for (int i = min_i; i < max_i; i++) {int index = master_grid.getIndex(i, j);// setting the gradient costunsigned char cost = (LETHAL_OBSTACLE - gradient_index*GRADIENT_FACTOR)%255;if (gradient_index <= GRADIENT_SIZE) {gradient_index++;} else {gradient_index = 0;}master_array[index] = cost;}}
}

4.2 Python实现

欧氏距离场核心代码

def compute(self, f_get, mat: np.ndarray, dim: int) -> np.array:"""Compute distance field along one-dimension baseon sample funciton f_get.Parameters:f_get (function): sample functionmat (np.ndarray): the matrix to transformdim (int): the dimension to transformReturns:df (np.array): the distance field along dim-dimension"""# initialzationk = 0n = mat.shape[dim]v, z = [0 for _ in range(n)], [0 for _ in range(n + 1)]z[0], z[1] = -self.INF, self.INF# envelopefor q in range(1, n):s = ((f_get(v[k]) + v[k] ** 2) - (f_get(q) + q ** 2)) / (2 * (v[k] - q))while s <= z[k]:k -= 1s = ((f_get(v[k]) + v[k] ** 2) - (f_get(q) + q ** 2)) / (2 * (v[k] - q))k += 1v[k] = qz[k], z[k + 1] = s, self.INF# distance calculationk = 0edf = np.zeros((n, ))for q in range(n):while z[k + 1] < q:k += 1edf[q] = (q - v[k]) ** 2 + f_get(v[k])return edf

欧氏梯度场核心代码:

def gradient(self, df: np.ndarray, x: float, y: float) -> np.array:"""To obtain the gradient at (x, y) in the distance field through bilinear interpolation.Parameters:df (np.ndarray): the distance fieldx/y (float): the query coordinateReturns:g(x, y): the gradient at (x, y)"""m, n = df.shapex, y = max(min(n - 1, x), 0), max(min(m - 1, y), 0)xi, yi = int(x), int(y)dx, dy = x - xi, y - yixi, yi = max(min(n - 1, xi), 0), max(min(m - 1, yi), 0)xp, yp = max(min(n - 1, xi + 1), 0), max(min(m - 1, yi - 1), 0)bl, br = df[yi, xi], df[yi, xp]tl, tr = df[yp, xi], df[yp, xp]return np.array([(1 - dy) * (br - bl) + dy * (tr + tl),-((1 - dx) * (tl - bl) + dx * (tr - br))])

效果如下所示
在这里插入图片描述

一个实际地图的案例如下

在这里插入图片描述

完整工程代码请联系下方博主名片获取


🔥 更多精彩专栏

  • 《ROS从入门到精通》
  • 《Pytorch深度学习实战》
  • 《机器学习强基计划》
  • 《运动规划实战精讲》

👇源码获取 · 技术交流 · 抱团学习 · 咨询分享 请联系👇

这篇关于轨迹优化 | 图解欧氏距离场与梯度场算法(附ROS C++/Python实现)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1069424

相关文章

Python开发文字版随机事件游戏的项目实例

《Python开发文字版随机事件游戏的项目实例》随机事件游戏是一种通过生成不可预测的事件来增强游戏体验的类型,在这篇博文中,我们将使用Python开发一款文字版随机事件游戏,通过这个项目,读者不仅能够... 目录项目概述2.1 游戏概念2.2 游戏特色2.3 目标玩家群体技术选择与环境准备3.1 开发环境3

Python中模块graphviz使用入门

《Python中模块graphviz使用入门》graphviz是一个用于创建和操作图形的Python库,本文主要介绍了Python中模块graphviz使用入门,具有一定的参考价值,感兴趣的可以了解一... 目录1.安装2. 基本用法2.1 输出图像格式2.2 图像style设置2.3 属性2.4 子图和聚

Python使用Matplotlib绘制3D曲面图详解

《Python使用Matplotlib绘制3D曲面图详解》:本文主要介绍Python使用Matplotlib绘制3D曲面图,在Python中,使用Matplotlib库绘制3D曲面图可以通过mpl... 目录准备工作绘制简单的 3D 曲面图绘制 3D 曲面图添加线框和透明度控制图形视角Matplotlib

一文教你Python如何快速精准抓取网页数据

《一文教你Python如何快速精准抓取网页数据》这篇文章主要为大家详细介绍了如何利用Python实现快速精准抓取网页数据,文中的示例代码简洁易懂,具有一定的借鉴价值,有需要的小伙伴可以了解下... 目录1. 准备工作2. 基础爬虫实现3. 高级功能扩展3.1 抓取文章详情3.2 保存数据到文件4. 完整示例

使用Python实现IP地址和端口状态检测与监控

《使用Python实现IP地址和端口状态检测与监控》在网络运维和服务器管理中,IP地址和端口的可用性监控是保障业务连续性的基础需求,本文将带你用Python从零打造一个高可用IP监控系统,感兴趣的小伙... 目录概述:为什么需要IP监控系统使用步骤说明1. 环境准备2. 系统部署3. 核心功能配置系统效果展

基于Python打造一个智能单词管理神器

《基于Python打造一个智能单词管理神器》这篇文章主要为大家详细介绍了如何使用Python打造一个智能单词管理神器,从查询到导出的一站式解决,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1. 项目概述:为什么需要这个工具2. 环境搭建与快速入门2.1 环境要求2.2 首次运行配置3. 核心功能使用指

Python实现微信自动锁定工具

《Python实现微信自动锁定工具》在数字化办公时代,微信已成为职场沟通的重要工具,但临时离开时忘记锁屏可能导致敏感信息泄露,下面我们就来看看如何使用Python打造一个微信自动锁定工具吧... 目录引言:当微信隐私遇到自动化守护效果展示核心功能全景图技术亮点深度解析1. 无操作检测引擎2. 微信路径智能获

C#如何调用C++库

《C#如何调用C++库》:本文主要介绍C#如何调用C++库方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录方法一:使用P/Invoke1. 导出C++函数2. 定义P/Invoke签名3. 调用C++函数方法二:使用C++/CLI作为桥接1. 创建C++/CL

Python中pywin32 常用窗口操作的实现

《Python中pywin32常用窗口操作的实现》本文主要介绍了Python中pywin32常用窗口操作的实现,pywin32主要的作用是供Python开发者快速调用WindowsAPI的一个... 目录获取窗口句柄获取最前端窗口句柄获取指定坐标处的窗口根据窗口的完整标题匹配获取句柄根据窗口的类别匹配获取句

利用Python打造一个Excel记账模板

《利用Python打造一个Excel记账模板》这篇文章主要为大家详细介绍了如何使用Python打造一个超实用的Excel记账模板,可以帮助大家高效管理财务,迈向财富自由之路,感兴趣的小伙伴快跟随小编一... 目录设置预算百分比超支标红预警记账模板功能介绍基础记账预算管理可视化分析摸鱼时间理财法碎片时间利用财