【猫狗分类】Pytorch VGG16 实现猫狗分类3-生成器+数据增强

2024-06-17 04:36

本文主要是介绍【猫狗分类】Pytorch VGG16 实现猫狗分类3-生成器+数据增强,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

背景

进行生成器的构建,还有数据增强。并且封装在data.py函数里。

声明:整个数据和代码来自于b站,链接:使用pytorch框架手把手教你利用VGG16网络编写猫狗分类程序_哔哩哔哩_bilibili

我做了复现,并且记录了自己在做这个项目分类时候,一些所思所得。

构建生成器+数据增强

这段代码定义了一个自定义的数据生成器类`DataGenerator`,用于处理图像数据,特别适用于深度学习中的图像分类或物体检测任务。下面是这个脚本的主要功能和流程总结:

1. **预处理函数定义**:
   - `preprocess_input(x)`: 将图像像素值归一化到[-1, 1]区间,这是许多深度学习模型的标准输入格式。
   - `cvtColor(image)`: 确保图像为RGB格式,如果输入是灰度或其他格式,则转换为RGB。

2. **`DataGenerator`类**:
   - **初始化 (`__init__`)**: 接受图像标注信息的列表、图像输入尺寸和是否进行随机数据增强的标志。
   - **数据长度 (`__len__`)**: 返回数据集的总样本数。
   - **获取样本 (`__getitem__`)**: 
     - 读取图像和标签;
     - 应用数据增强(如果`random=True`),包括缩放、裁剪、翻转、旋转和色域扭曲;
     - 对图像进行预处理(归一化并调整通道顺序);
     - 返回处理后的图像数据和标签。
   - **辅助函数**:
     - `rand(a, b)`: 生成一个在[a, b]范围内的随机数。
     - `get_random_data(image, inpt_shape, jitter, hue, sat, val, random)`: 实现数据增强逻辑,包括调整图像大小、添加灰边、随机翻转、旋转以及HSV空间的颜色调整。

总结来说,这个`DataGenerator`类主要用于读取图片文件,并根据给定的参数执行一系列图像预处理和数据增强操作,以便于后续的深度学习模型训练。它能够生成经过标准化处理和增强的数据,提高模型对图像变化的鲁棒性,适合于训练图像识别、分类或检测模型。

【为什么获取样本放在 (__getitem__)

def __getitem__(self, index):annotation_path=self.annotation_lines[index].split(';')[1].split()[0]image=Image.open(annotation_path)image=self.get_random_data(image,self.input_shape,random=self.random)image=np.transpose(preprocess_input(np.array(image).astype(np.float32)),[2,0,1])y=int(self.annotation_lines[index].split(';')[0])return image,y

在Python的类定义中,`__getitem__`方法是一个特殊方法,当实例化的对象使用方括号`[]`操作符访问元素时,该方法会被自动调用。对于数据处理或者数据集类(如上述的`DataGenerator`)而言,实现`__getitem__`方法具有重要意义,原因如下:

1. **索引访问**: 在深度学习中,我们经常需要按索引从数据集中获取单个样本,用于训练或验证模型。通过重载`__getitem__`,可以像操作列表一样简单地从数据集中提取数据,例如`data = dataset[i]`。

2. **迭代兼容**: 实现了`__getitem__`的数据集类可以被用在for循环中,因为Python的迭代协议会尝试使用`__getitem__`方法来遍历对象。这样使得数据集能够方便地与很多现有的库和框架集成,比如PyTorch的训练循环中直接迭代数据加载器。

3. **兼容PyTorch等框架**: 深度学习框架(如PyTorch)的数据加载器(DataLoader)要求数据集类实现`__getitem__`和`__len__`方法,以便能够高效地按批次加载和处理数据。这允许框架根据需要动态地请求和处理数据,特别是在进行批量训练时,提高了内存效率和训练速度。

4. **灵活的数据处理**: 在`__getitem__`内部,可以根据索引执行复杂的逻辑来处理和返回特定的样本。这包括但不限于加载图像、应用数据增强、预处理等操作,为每个样本提供了定制化的处理流程。

因此,在上述代码中,将获取样本的逻辑放在`__getitem__`方法中,是为了遵循这些最佳实践和框架要求,确保数据集能够高效、灵活地服务于深度学习模型的训练和验证过程。

完整代码

import cv2
import numpy as np
import torch.utils.data as data
from PIL import  Imagedef preprocess_input(x):x/=127.5x-=1.return x
def cvtColor(image):if len(np.shape(image))==3 and np.shape(image)[-2]==3:return imageelse:image=image.convert('RGB')return imageclass DataGenerator(data.Dataset):def __init__(self,annotation_lines,inpt_shape,random=True):self.annotation_lines=annotation_linesself.input_shape=inpt_shapeself.random=randomdef __len__(self):return len(self.annotation_lines)def __getitem__(self, index):annotation_path=self.annotation_lines[index].split(';')[1].split()[0]image=Image.open(annotation_path)image=self.get_random_data(image,self.input_shape,random=self.random)image=np.transpose(preprocess_input(np.array(image).astype(np.float32)),[2,0,1])y=int(self.annotation_lines[index].split(';')[0])return image,ydef rand(self,a=0,b=1):return np.random.rand()*(b-a)+adef get_random_data(self,image,inpt_shape,jitter=.3,hue=.1,sat=1.5,val=1.5,random=True):image=cvtColor(image)iw,ih=image.sizeh,w=inpt_shapeif not random:scale=min(w/iw,h/ih)nw=int(iw*scale)nh=int(ih*scale)dx=(w-nw)//2dy=(h-nh)//2image=image.resize((nw,nh),Image.BICUBIC)new_image=Image.new('RGB',(w,h),(128,128,128))new_image.paste(image,(dx,dy))image_data=np.array(new_image,np.float32)return image_datanew_ar=w/h*self.rand(1-jitter,1+jitter)/self.rand(1-jitter,1+jitter)scale=self.rand(.75,1.25)if new_ar<1:nh=int(scale*h)nw=int(nh*new_ar)else:nw=int(scale*w)nh=int(nw/new_ar)image=image.resize((nw,nh),Image.BICUBIC)#将图像多余的部分加上灰条dx=int(self.rand(0,w-nw))dy=int(self.rand(0,h-nh))new_image=Image.new('RGB',(w,h),(128,128,128))new_image.paste(image,(dx,dy))image=new_image#翻转图像flip=self.rand()<.5if flip: image=image.transpose(Image.FLIP_LEFT_RIGHT)rotate=self.rand()<.5if rotate:angle=np.random.randint(-15,15)a,b=w/2,h/2M=cv2.getRotationMatrix2D((a,b),angle,1)image=cv2.warpAffine(np.array(image),M,(w,h),borderValue=[128,128,128])#色域扭曲hue=self.rand(-hue,hue)sat=self.rand(1,sat) if self.rand()<.5 else 1/self.rand(1,sat)val=self.rand(1,val) if self.rand()<.5 else 1/self.rand(1,val)x=cv2.cvtColor(np.array(image,np.float32)/255,cv2.COLOR_RGB2HSV)#颜色空间转换x[...,1]*=satx[...,2]*=valx[x[:,:,0]>360,0]=360x[:,:,1:][x[:,:,1:]>1]=1x[x<0]=0image_data=cv2.cvtColor(x,cv2.COLOR_HSV2RGB)*255return image_data


 

这篇关于【猫狗分类】Pytorch VGG16 实现猫狗分类3-生成器+数据增强的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1068490

相关文章

SpringBoot集成redisson实现延时队列教程

《SpringBoot集成redisson实现延时队列教程》文章介绍了使用Redisson实现延迟队列的完整步骤,包括依赖导入、Redis配置、工具类封装、业务枚举定义、执行器实现、Bean创建、消费... 目录1、先给项目导入Redisson依赖2、配置redis3、创建 RedissonConfig 配

SpringBoot分段处理List集合多线程批量插入数据方式

《SpringBoot分段处理List集合多线程批量插入数据方式》文章介绍如何处理大数据量List批量插入数据库的优化方案:通过拆分List并分配独立线程处理,结合Spring线程池与异步方法提升效率... 目录项目场景解决方案1.实体类2.Mapper3.spring容器注入线程池bejsan对象4.创建

PHP轻松处理千万行数据的方法详解

《PHP轻松处理千万行数据的方法详解》说到处理大数据集,PHP通常不是第一个想到的语言,但如果你曾经需要处理数百万行数据而不让服务器崩溃或内存耗尽,你就会知道PHP用对了工具有多强大,下面小编就... 目录问题的本质php 中的数据流处理:为什么必不可少生成器:内存高效的迭代方式流量控制:避免系统过载一次性

Python的Darts库实现时间序列预测

《Python的Darts库实现时间序列预测》Darts一个集统计、机器学习与深度学习模型于一体的Python时间序列预测库,本文主要介绍了Python的Darts库实现时间序列预测,感兴趣的可以了解... 目录目录一、什么是 Darts?二、安装与基本配置安装 Darts导入基础模块三、时间序列数据结构与

Python使用FastAPI实现大文件分片上传与断点续传功能

《Python使用FastAPI实现大文件分片上传与断点续传功能》大文件直传常遇到超时、网络抖动失败、失败后只能重传的问题,分片上传+断点续传可以把大文件拆成若干小块逐个上传,并在中断后从已完成分片继... 目录一、接口设计二、服务端实现(FastAPI)2.1 运行环境2.2 目录结构建议2.3 serv

C#实现千万数据秒级导入的代码

《C#实现千万数据秒级导入的代码》在实际开发中excel导入很常见,现代社会中很容易遇到大数据处理业务,所以本文我就给大家分享一下千万数据秒级导入怎么实现,文中有详细的代码示例供大家参考,需要的朋友可... 目录前言一、数据存储二、处理逻辑优化前代码处理逻辑优化后的代码总结前言在实际开发中excel导入很

SpringBoot+RustFS 实现文件切片极速上传的实例代码

《SpringBoot+RustFS实现文件切片极速上传的实例代码》本文介绍利用SpringBoot和RustFS构建高性能文件切片上传系统,实现大文件秒传、断点续传和分片上传等功能,具有一定的参考... 目录一、为什么选择 RustFS + SpringBoot?二、环境准备与部署2.1 安装 RustF

Nginx部署HTTP/3的实现步骤

《Nginx部署HTTP/3的实现步骤》本文介绍了在Nginx中部署HTTP/3的详细步骤,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学... 目录前提条件第一步:安装必要的依赖库第二步:获取并构建 BoringSSL第三步:获取 Nginx

MyBatis Plus实现时间字段自动填充的完整方案

《MyBatisPlus实现时间字段自动填充的完整方案》在日常开发中,我们经常需要记录数据的创建时间和更新时间,传统的做法是在每次插入或更新操作时手动设置这些时间字段,这种方式不仅繁琐,还容易遗漏,... 目录前言解决目标技术栈实现步骤1. 实体类注解配置2. 创建元数据处理器3. 服务层代码优化填充机制详

Python实现Excel批量样式修改器(附完整代码)

《Python实现Excel批量样式修改器(附完整代码)》这篇文章主要为大家详细介绍了如何使用Python实现一个Excel批量样式修改器,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一... 目录前言功能特性核心功能界面特性系统要求安装说明使用指南基本操作流程高级功能技术实现核心技术栈关键函