【Python】在 Pandas 中使用 AdaBoost 进行分类

2024-06-17 00:12

本文主要是介绍【Python】在 Pandas 中使用 AdaBoost 进行分类,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!


我们都找到天使了
说好了 心事不能偷藏着
什么都 一起做 幸福得 没话说
把坏脾气变成了好沟通
我们都找到天使了 约好了
负责对方的快乐
阳光下 的山坡 你素描 的以后
怎么抄袭我脑袋 想的
                     🎵 薛凯琪《找到天使了》


在数据科学和机器学习的工作流程中,Pandas 是一个非常强大的数据操作和分析工具库。结合 Pandas 和 AdaBoost 分类算法,可以高效地进行数据预处理和分类任务。本文将介绍如何在 Pandas 中使用 AdaBoost 进行分类。

什么是 AdaBoost?

AdaBoost(Adaptive Boosting)是一种集成学习算法,通过结合多个弱分类器来提升分类性能。每个弱分类器都专注于之前分类错误的样本,最终形成一个强分类器。AdaBoost 适用于各种分类任务,具有很高的准确性和适应性。

使用 AdaBoost 的步骤

数据准备:使用 Pandas 加载和预处理数据。
模型训练:使用 Scikit-Learn 实现 AdaBoost 算法进行模型训练。
模型评估:评估模型的性能。

安装必要的库

在开始之前,请确保你已经安装了 Pandas 和 Scikit-Learn。你可以使用以下命令进行安装:

pip install pandas scikit-learn

步骤一:数据准备

我们将使用一个示例数据集,并通过 Pandas 进行加载和预处理。假设我们使用的是著名的 Iris 数据集。

import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.datasets import load_iris# 加载 Iris 数据集
iris = load_iris()
df = pd.DataFrame(data=iris.data, columns=iris.feature_names)
df['target'] = iris.target# 显示前几行数据
print(df.head())

步骤二:模型训练

在这一步中,我们将使用 Scikit-Learn 提供的 AdaBoostClassifier 进行模型训练。

from sklearn.ensemble import AdaBoostClassifier
from sklearn.tree import DecisionTreeClassifier
from sklearn.metrics import accuracy_score# 分割数据集为训练集和测试集
X = df.drop(columns=['target'])
y = df['target']
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)# 初始化弱分类器(决策树)
weak_classifier = DecisionTreeClassifier(max_depth=1)# 初始化 AdaBoost 分类器
adaboost = AdaBoostClassifier(base_estimator=weak_classifier, n_estimators=50, learning_rate=1.0, random_state=42)# 训练模型
adaboost.fit(X_train, y_train)# 预测
y_pred = adaboost.predict(X_test)# 评估模型
accuracy = accuracy_score(y_test, y_pred)
print(f"Accuracy: {accuracy * 100:.2f}%")

步骤三:模型评估

我们已经在上面的代码中计算了模型的准确性。除此之外,我们还可以绘制混淆矩阵和分类报告,以更详细地评估模型性能。

from sklearn.metrics import confusion_matrix, classification_report
import seaborn as sns
import matplotlib.pyplot as plt# 混淆矩阵
cm = confusion_matrix(y_test, y_pred)
sns.heatmap(cm, annot=True, fmt='d', cmap='Blues')
plt.xlabel('Predicted')
plt.ylabel('True')
plt.title('Confusion Matrix')
plt.show()# 分类报告
report = classification_report(y_test, y_pred, target_names=iris.target_names)
print(report)

结论

通过上述步骤,我们展示了如何使用 Pandas 和 Scikit-Learn 实现 AdaBoost 分类。具体步骤包括数据准备、模型训练和模型评估。AdaBoost 是一种强大的集成学习算法,通过结合多个弱分类器来提高分类性能。结合 Pandas 的数据处理能力和 Scikit-Learn 的机器学习工具,可以高效地完成分类任务。

这篇关于【Python】在 Pandas 中使用 AdaBoost 进行分类的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1067944

相关文章

python常见环境管理工具超全解析

《python常见环境管理工具超全解析》在Python开发中,管理多个项目及其依赖项通常是一个挑战,下面:本文主要介绍python常见环境管理工具的相关资料,文中通过代码介绍的非常详细,需要的朋友... 目录1. conda2. pip3. uvuv 工具自动创建和管理环境的特点4. setup.py5.

Python常用命令提示符使用方法详解

《Python常用命令提示符使用方法详解》在学习python的过程中,我们需要用到命令提示符(CMD)进行环境的配置,:本文主要介绍Python常用命令提示符使用方法的相关资料,文中通过代码介绍的... 目录一、python环境基础命令【Windows】1、检查Python是否安装2、 查看Python的安

Python UV安装、升级、卸载详细步骤记录

《PythonUV安装、升级、卸载详细步骤记录》:本文主要介绍PythonUV安装、升级、卸载的详细步骤,uv是Astral推出的下一代Python包与项目管理器,主打单一可执行文件、极致性能... 目录安装检查升级设置自动补全卸载UV 命令总结 官方文档详见:https://docs.astral.sh/

Python并行处理实战之如何使用ProcessPoolExecutor加速计算

《Python并行处理实战之如何使用ProcessPoolExecutor加速计算》Python提供了多种并行处理的方式,其中concurrent.futures模块的ProcessPoolExecu... 目录简介完整代码示例代码解释1. 导入必要的模块2. 定义处理函数3. 主函数4. 生成数字列表5.

Python中help()和dir()函数的使用

《Python中help()和dir()函数的使用》我们经常需要查看某个对象(如模块、类、函数等)的属性和方法,Python提供了两个内置函数help()和dir(),它们可以帮助我们快速了解代... 目录1. 引言2. help() 函数2.1 作用2.2 使用方法2.3 示例(1) 查看内置函数的帮助(

Python虚拟环境与Conda使用指南分享

《Python虚拟环境与Conda使用指南分享》:本文主要介绍Python虚拟环境与Conda使用指南,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、python 虚拟环境概述1.1 什么是虚拟环境1.2 为什么需要虚拟环境二、Python 内置的虚拟环境工具

Linux脚本(shell)的使用方式

《Linux脚本(shell)的使用方式》:本文主要介绍Linux脚本(shell)的使用方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录概述语法详解数学运算表达式Shell变量变量分类环境变量Shell内部变量自定义变量:定义、赋值自定义变量:引用、修改、删

Python实例题之pygame开发打飞机游戏实例代码

《Python实例题之pygame开发打飞机游戏实例代码》对于python的学习者,能够写出一个飞机大战的程序代码,是不是感觉到非常的开心,:本文主要介绍Python实例题之pygame开发打飞机... 目录题目pygame-aircraft-game使用 Pygame 开发的打飞机游戏脚本代码解释初始化部

Python pip下载包及所有依赖到指定文件夹的步骤说明

《Pythonpip下载包及所有依赖到指定文件夹的步骤说明》为了方便开发和部署,我们常常需要将Python项目所依赖的第三方包导出到本地文件夹中,:本文主要介绍Pythonpip下载包及所有依... 目录步骤说明命令格式示例参数说明离线安装方法注意事项总结要使用pip下载包及其所有依赖到指定文件夹,请按照以

Python实现精准提取 PDF中的文本,表格与图片

《Python实现精准提取PDF中的文本,表格与图片》在实际的系统开发中,处理PDF文件不仅限于读取整页文本,还有提取文档中的表格数据,图片或特定区域的内容,下面我们来看看如何使用Python实... 目录安装 python 库提取 PDF 文本内容:获取整页文本与指定区域内容获取页面上的所有文本内容获取