快速LLaMA:面向大型语言模型的查询感知推理加速 论文摘要翻译与评论

本文主要是介绍快速LLaMA:面向大型语言模型的查询感知推理加速 论文摘要翻译与评论,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

论文摘要翻译与评论

论文标题:

QuickLLaMA: Query-aware Inference Acceleration for Large Language Models

提出的框架


我们Q-LLM框架的示意图。来自记忆上下文的输入被分割成记忆块,通过查询感知的上下文查找来搜索与查询相关的块。目前的键值缓存由全局标记、查询标记、查询相关块和局部标记组成。它们共同形成一个新的上下文窗口,并与当前标记一起被输入到LLM中。

摘要翻译:

大型语言模型(LLMs)在理解和推理长文本上下文方面的能力是各领域进步的关键。然而,它们在识别相关上下文和记忆搜索方面仍存在困难。为了解决这个问题,我们引入了Query-aware Inference for LLMs(Q-LLM)系统,该系统旨在像人类认知一样处理广泛的序列。通过专注于与给定查询相关的记忆数据,Q-LLM能够在固定窗口大小内准确捕捉相关信息,并为查询提供精确答案。它不需要额外的训练,可以无缝集成到任何LLMs中。使用LLaMA3(QuickLLaMA),Q-LLM可以在30秒内阅读《哈利·波特》并准确回答相关问题。在公认的基准测试中,Q-LLM在LLaMA3上的性能提高了7.17%,在Mistral上的性能提高了3.26%,在无限基准测试中提高了7.0%,并在LLaMA3上实现了100%的准确率。我们的代码可以在https://github.com/dvlab-research/Q-LLM找到。

主要方法:
  1. 系统设计
  • Q-LLM系统采用Query-aware Context Lookup策略,只选择与查询相关的记忆数据,从而过滤掉无关的干扰。
  • 该系统无需额外训练,可以与任何LLMs无缝集成。
  1. 性能评估
  • 使用LLaMA3-8B-inst和Mistral-7B-inst-v0.2作为基础模型,进行一系列基准测试,包括Longbench、∞-Bench和Needle-in-a-Haystack Benchmark。
  • 结果显示Q-LLM在处理极长序列时显著优于当前的最新技术。
主要贡献:
  1. Q-LLM系统的提出
  • 该系统利用查询感知的上下文查找策略,显著提高了长序列处理和推理的效率。
  1. 无需额外训练的系统集成
  • Q-LLM无需额外训练即可与现有的大型语言模型集成,使其具有广泛的应用潜力。
  1. 显著的性能提升
  • 在多个基准测试中,Q-LLM展示了在处理长序列任务中的优越性能,尤其是在查询相关的推理任务中。
创新性:
  1. 查询感知上下文查找
  • 模拟人类认知的处理方式,通过查询感知的上下文查找策略,专注于与查询相关的信息,提高了模型的效率和准确性。
  1. 长序列处理
  • Q-LLM能够在固定窗口大小内处理长达1024K tokens的序列,这是目前许多模型所不能及的。
方法的长强点和弱点:
  • 优势
    • 无需额外训练即可集成,降低了系统部署的复杂性。
    • 在多项基准测试中表现出色,尤其是在处理长序列任务中。
    • 查询感知的上下文查找策略提高了模型的查询回答准确性。
  • 弱点
    • 依赖于固定窗口大小,可能在处理高度复杂的上下文时存在信息丢失的风险。
    • 对于非常嘈杂的上下文,尽管有过滤机制,仍可能受到干扰,影响准确性。

通过以上分析,Q-LLM展示了在大型语言模型处理长序列任务中的巨大潜力,特别是在无需额外训练的情况下实现了显著的性能提升。然而,未来的研究需要继续优化其处理复杂上下文的能力,以确保在更广泛的应用场景中能够有效应用。

论文下载地址

链接:https://pan.quark.cn/s/012ff035720d

如果您也对大模型的应用,调优,安装感兴趣,请关注我!

这篇关于快速LLaMA:面向大型语言模型的查询感知推理加速 论文摘要翻译与评论的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!


原文地址:
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.chinasem.cn/article/1066551

相关文章

Go语言编译环境设置教程

《Go语言编译环境设置教程》Go语言支持高并发(goroutine)、自动垃圾回收,编译为跨平台二进制文件,云原生兼容且社区活跃,开发便捷,内置测试与vet工具辅助检测错误,依赖模块化管理,提升开发效... 目录Go语言优势下载 Go  配置编译环境配置 GOPROXYIDE 设置(VS Code)一些基本

MyBatis-Plus通用中等、大量数据分批查询和处理方法

《MyBatis-Plus通用中等、大量数据分批查询和处理方法》文章介绍MyBatis-Plus分页查询处理,通过函数式接口与Lambda表达式实现通用逻辑,方法抽象但功能强大,建议扩展分批处理及流式... 目录函数式接口获取分页数据接口数据处理接口通用逻辑工具类使用方法简单查询自定义查询方法总结函数式接口

MySql基本查询之表的增删查改+聚合函数案例详解

《MySql基本查询之表的增删查改+聚合函数案例详解》本文详解SQL的CURD操作INSERT用于数据插入(单行/多行及冲突处理),SELECT实现数据检索(列选择、条件过滤、排序分页),UPDATE... 目录一、Create1.1 单行数据 + 全列插入1.2 多行数据 + 指定列插入1.3 插入否则更

MySQL 多列 IN 查询之语法、性能与实战技巧(最新整理)

《MySQL多列IN查询之语法、性能与实战技巧(最新整理)》本文详解MySQL多列IN查询,对比传统OR写法,强调其简洁高效,适合批量匹配复合键,通过联合索引、分批次优化提升性能,兼容多种数据库... 目录一、基础语法:多列 IN 的两种写法1. 直接值列表2. 子查询二、对比传统 OR 的写法三、性能分析

深入理解Go语言中二维切片的使用

《深入理解Go语言中二维切片的使用》本文深入讲解了Go语言中二维切片的概念与应用,用于表示矩阵、表格等二维数据结构,文中通过示例代码介绍的非常详细,需要的朋友们下面随着小编来一起学习学习吧... 目录引言二维切片的基本概念定义创建二维切片二维切片的操作访问元素修改元素遍历二维切片二维切片的动态调整追加行动态

Go语言中make和new的区别及说明

《Go语言中make和new的区别及说明》:本文主要介绍Go语言中make和new的区别及说明,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1 概述2 new 函数2.1 功能2.2 语法2.3 初始化案例3 make 函数3.1 功能3.2 语法3.3 初始化

从入门到精通MySQL联合查询

《从入门到精通MySQL联合查询》:本文主要介绍从入门到精通MySQL联合查询,本文通过实例代码给大家介绍的非常详细,需要的朋友可以参考下... 目录摘要1. 多表联合查询时mysql内部原理2. 内连接3. 外连接4. 自连接5. 子查询6. 合并查询7. 插入查询结果摘要前面我们学习了数据库设计时要满

MySQL查询JSON数组字段包含特定字符串的方法

《MySQL查询JSON数组字段包含特定字符串的方法》在MySQL数据库中,当某个字段存储的是JSON数组,需要查询数组中包含特定字符串的记录时传统的LIKE语句无法直接使用,下面小编就为大家介绍两种... 目录问题背景解决方案对比1. 精确匹配方案(推荐)2. 模糊匹配方案参数化查询示例使用场景建议性能优

mysql表操作与查询功能详解

《mysql表操作与查询功能详解》本文系统讲解MySQL表操作与查询,涵盖创建、修改、复制表语法,基本查询结构及WHERE、GROUPBY等子句,本文结合实例代码给大家介绍的非常详细,感兴趣的朋友跟随... 目录01.表的操作1.1表操作概览1.2创建表1.3修改表1.4复制表02.基本查询操作2.1 SE

Go语言中nil判断的注意事项(最新推荐)

《Go语言中nil判断的注意事项(最新推荐)》本文给大家介绍Go语言中nil判断的注意事项,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录1.接口变量的特殊行为2.nil的合法类型3.nil值的实用行为4.自定义类型与nil5.反射判断nil6.函数返回的