【CS.AL】算法核心之贪心算法:从入门到进阶

2024-06-16 03:12

本文主要是介绍【CS.AL】算法核心之贪心算法:从入门到进阶,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

    • 1. 概述
    • 2. 适用场景
    • 3. 设计步骤
    • 4. 优缺点
    • 5. 典型应用
    • 6. 题目和代码示例
      • 6.1 简单题目:找零问题
      • 6.2 中等题目:区间调度问题
      • 6.3 困难题目:分数背包问题
    • 7. 题目和思路表格
    • 8. 总结
    • References

1000.1.CS.AL.1.4-核心-GreedyAlgorithm-Created: 2024-06-13.Thursday17:47
在这里插入图片描述

1. 概述

贪心算法是一种求解优化问题的算法策略。在每一步选择中,贪心算法都会选择当前最优解,希望通过一系列局部最优解的选择,达到全局最优解。贪心算法不回溯,不进行全局考虑,而是根据局部情况作出当前最优的选择。

2. 适用场景

贪心算法适用于一类特殊问题,即具有贪心选择性质的问题。这类问题满足每一步的选择都是局部最优的,并且不同步骤之间没有依赖关系,可以独立地做出选择。在这种情况下,贪心算法通常可以找到全局最优解或者近似最优解。

3. 设计步骤

  1. 确定问题的最优解性质:贪心算法求解问题时,首先要确定问题是否具有最优子结构和贪心选择性质。如果满足这两个性质,那么贪心算法可能是可行的。
  2. 选择合适的贪心策略:在每一步中,需要选择一个局部最优解。这就要根据问题的具体特点,设计适合的贪心策略,使得每次选择都是当前的最优解。
  3. 构建贪心算法:根据选择的贪心策略,逐步构建出贪心算法,不断做出当前最优的选择,直至达到全局最优解或者满足问题的要求。

4. 优缺点

  • 优点:贪心算法通常简单、高效,且易于实现。在一些特定问题中,贪心算法可以快速找到最优或近似最优解。
  • 缺点:贪心算法并不适用于所有问题,有些问题并不具备贪心选择性质,因此贪心算法可能得到局部最优解而不是全局最优解。在这种情况下,需要考虑其他算法策略。

5. 典型应用

  • 最小生成树问题:如Prim算法和Kruskal算法用于求解图中的最小生成树。
  • 背包问题:如分数背包问题、0-1背包问题等,贪心算法在某些情况下可以得到近似最优解。
  • 霍夫曼编码:用于数据压缩,通过贪心选择构建最优前缀编码。
  • 最短路径问题:如Dijkstra算法和A*算法用于求解图中的最短路径。

6. 题目和代码示例

6.1 简单题目:找零问题

题目描述:给定不同面值的硬币,求最少硬币数使得总金额为给定值。

代码示例

#include <iostream>
#include <vector>
#include <algorithm>// 函数声明
int coinChange(std::vector<int>& coins, int amount);int main() {std::vector<int> coins = {1, 2, 5};int amount = 11;std::cout << "最少硬币数: " << coinChange(coins, amount) << std::endl;return 0;
}// 找零问题:求最少硬币数
int coinChange(std::vector<int>& coins, int amount) {// 步骤 1: 对硬币面值从大到小排序std::sort(coins.rbegin(), coins.rend());int count = 0;// 步骤 2: 遍历硬币面值,逐步减少目标金额for (int coin : coins) {while (amount >= coin) {amount -= coin;count++;}}// 步骤 3: 检查是否正好找零成功return amount == 0 ? count : -1;
}

Ref. ![[1000.03.CS.PL.C++.4.2-STL-Algorithms-SortingOperations#1.1 简述]]

Others.

def coin_change(coins, amount):coins.sort(reverse=True)count = 0for coin in coins:while amount >= coin:amount -= coincount += 1return count if amount == 0 else -1# 示例
coins = [1, 2, 5]
amount = 11
print(coin_change(coins, amount))  # 输出: 3 (5 + 5 + 1)

6.2 中等题目:区间调度问题

题目描述:给定多个会议的开始和结束时间,求最多能安排的会议数量。

代码示例

#include <iostream>
#include <vector>
#include <algorithm>// 会议结构体
struct Meeting {int start;int end;
};// 函数声明
int maxMeetings(std::vector<Meeting>& meetings);int main() {std::vector<Meeting> meetings = {{1, 2}, {3, 4}, {0, 6}, {5, 7}, {8, 9}, {5, 9}};std::cout << "最多能安排的会议数量: " << maxMeetings(meetings) << std::endl;return 0;
}// 区间调度问题:求最多能安排的会议数量
int maxMeetings(std::vector<Meeting>& meetings) {// 步骤 1: 根据会议结束时间排序std::sort(meetings.begin(), meetings.end(), [](const Meeting& a, const Meeting& b) {return a.end < b.end;});int count = 0;int endTime = 0;// 步骤 2: 遍历会议,选择结束时间最早的会议for (const auto& meeting : meetings) {if (meeting.start >= endTime) {count++;endTime = meeting.end;}}return count;
}

ref.

def max_meetings(meetings):meetings.sort(key=lambda x: x[1])count = 0end_time = 0for meeting in meetings:if meeting[0] >= end_time:count += 1end_time = meeting[1]return count# 示例
meetings = [(1, 2), (3, 4), (0, 6), (5, 7), (8, 9), (5, 9)]
print(max_meetings(meetings))  # 输出: 4

6.3 困难题目:分数背包问题

题目描述:给定物品的重量和价值,求在背包容量限制下的最大价值,物品可以分割。

代码示例

#include <iostream>
#include <vector>
#include <algorithm>// 物品结构体
struct Item {double value;double weight;
};// 函数声明
double fractionalKnapsack(std::vector<Item>& items, double capacity);int main() {std::vector<Item> items = {{60, 10}, {100, 20}, {120, 30}};double capacity = 50;std::cout << "背包的最大价值: " << fractionalKnapsack(items, capacity) << std::endl;return 0;
}// 分数背包问题:求在背包容量限制下的最大价值
double fractionalKnapsack(std::vector<Item>& items, double capacity) {// 步骤 1: 根据物品单位重量价值排序std::sort(items.begin(), items.end(), [](const Item& a, const Item& b) {return (a.value / a.weight) > (b.value / b.weight);});double totalValue = 0;// 步骤 2: 遍历物品,选择单位重量价值最高的物品for (const auto& item : items) {if (capacity >= item.weight) {capacity -= item.weight;totalValue += item.value;} else {totalValue += item.value * (capacity / item.weight);break;}}return totalValue;
}

ref.

def fractional_knapsack(values, weights, capacity):items = list(zip(values, weights))items.sort(key=lambda x: x[0] / x[1], reverse=True)total_value = 0for value, weight in items:if capacity >= weight:capacity -= weighttotal_value += valueelse:total_value += value * (capacity / weight)breakreturn total_value# 示例
values = [60, 100, 120]
weights = [10, 20, 30]
capacity = 50
print(fractional_knapsack(values, weights, capacity))  # 输出: 240.0

7. 题目和思路表格

序号题目题目描述贪心策略代码实现
1找零问题求最少硬币数使得总金额为给定值每次选择面值最大的硬币代码
2区间调度问题求最多能安排的会议数量每次选择结束时间最早的会议代码
3分数背包问题求在背包容量限制下的最大价值每次选择单位重量价值最高的物品代码
4最小生成树用于求解图中的最小生成树每次选择权重最小的边-
5霍夫曼编码用于数据压缩每次选择频率最低的节点进行合并-
6最短路径用于求解图中的最短路径每次选择当前节点到未访问节点的最短路径-
7活动选择问题求最多可选择的互不相交的活动每次选择结束时间最早的活动-
8跳跃游戏判断能否跳到最后一个位置每次选择跳跃距离最大的步骤-
9加油站问题求最少加油次数到达目的地每次选择油量最多的加油站-
10股票买卖求最大收益每次选择局部最低点买入,局部最高点卖出-

8. 总结

贪心算法是一种简单而高效的算法策略,在解决满足贪心选择性质的问题时,能够得到较好的结果。然而,要注意贪心算法的局限性,它不适用于所有问题,有些问题需要考虑其他算法设计策略,如分治、动态规划等。因此,在实际应用中,需要根据问题的性质和要求选择合适的算法策略。通过理解和掌握上述贪心算法的例子和思路,能够有效地提升解决问题的能力。

References

这篇关于【CS.AL】算法核心之贪心算法:从入门到进阶的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1065334

相关文章

深度解析Python yfinance的核心功能和高级用法

《深度解析Pythonyfinance的核心功能和高级用法》yfinance是一个功能强大且易于使用的Python库,用于从YahooFinance获取金融数据,本教程将深入探讨yfinance的核... 目录yfinance 深度解析教程 (python)1. 简介与安装1.1 什么是 yfinance?

Java List 使用举例(从入门到精通)

《JavaList使用举例(从入门到精通)》本文系统讲解JavaList,涵盖基础概念、核心特性、常用实现(如ArrayList、LinkedList)及性能对比,介绍创建、操作、遍历方法,结合实... 目录一、List 基础概念1.1 什么是 List?1.2 List 的核心特性1.3 List 家族成

基于Python编写自动化邮件发送程序(进阶版)

《基于Python编写自动化邮件发送程序(进阶版)》在数字化时代,自动化邮件发送功能已成为企业和个人提升工作效率的重要工具,本文将使用Python编写一个简单的自动化邮件发送程序,希望对大家有所帮助... 目录理解SMTP协议基础配置开发环境构建邮件发送函数核心逻辑实现完整发送流程添加附件支持功能实现htm

c++日志库log4cplus快速入门小结

《c++日志库log4cplus快速入门小结》文章浏览阅读1.1w次,点赞9次,收藏44次。本文介绍Log4cplus,一种适用于C++的线程安全日志记录API,提供灵活的日志管理和配置控制。文章涵盖... 目录简介日志等级配置文件使用关于初始化使用示例总结参考资料简介log4j 用于Java,log4c

史上最全MybatisPlus从入门到精通

《史上最全MybatisPlus从入门到精通》MyBatis-Plus是MyBatis增强工具,简化开发并提升效率,支持自动映射表名/字段与实体类,提供条件构造器、多种查询方式(等值/范围/模糊/分页... 目录1.简介2.基础篇2.1.通用mapper接口操作2.2.通用service接口操作3.进阶篇3

Python自定义异常的全面指南(入门到实践)

《Python自定义异常的全面指南(入门到实践)》想象你正在开发一个银行系统,用户转账时余额不足,如果直接抛出ValueError,调用方很难区分是金额格式错误还是余额不足,这正是Python自定义异... 目录引言:为什么需要自定义异常一、异常基础:先搞懂python的异常体系1.1 异常是什么?1.2

基于Python实现进阶版PDF合并/拆分工具

《基于Python实现进阶版PDF合并/拆分工具》在数字化时代,PDF文件已成为日常工作和学习中不可或缺的一部分,本文将详细介绍一款简单易用的PDF工具,帮助用户轻松完成PDF文件的合并与拆分操作... 目录工具概述环境准备界面说明合并PDF文件拆分PDF文件高级技巧常见问题完整源代码总结在数字化时代,PD

javaSE类和对象进阶用法举例详解

《javaSE类和对象进阶用法举例详解》JavaSE的面向对象编程是软件开发中的基石,它通过类和对象的概念,实现了代码的模块化、可复用性和灵活性,:本文主要介绍javaSE类和对象进阶用法的相关资... 目录前言一、封装1.访问限定符2.包2.1包的概念2.2导入包2.3自定义包2.4常见的包二、stati

Python实现Word转PDF全攻略(从入门到实战)

《Python实现Word转PDF全攻略(从入门到实战)》在数字化办公场景中,Word文档的跨平台兼容性始终是个难题,而PDF格式凭借所见即所得的特性,已成为文档分发和归档的标准格式,下面小编就来和大... 目录一、为什么需要python处理Word转PDF?二、主流转换方案对比三、五套实战方案详解方案1:

深度解析Spring Security 中的 SecurityFilterChain核心功能

《深度解析SpringSecurity中的SecurityFilterChain核心功能》SecurityFilterChain通过组件化配置、类型安全路径匹配、多链协同三大特性,重构了Spri... 目录Spring Security 中的SecurityFilterChain深度解析一、Security