OpenCV形态学

2024-06-16 02:36
文章标签 opencv 形态学

本文主要是介绍OpenCV形态学,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

什么事形态学处理
基于图像形态进行处理的一些基本方法;
这些处理方法基本是对二进制图像进行处理;
卷积核决定着图像出来后的效果。

一 图像二值化

什么是二值化
将图像的每个像素变成两种值,如0,255.

全局二值化。

局部二值化。

threshold API

threshold(img,thresh,maxVal,type)
img:图像,最好是灰度图
thresh:阈值
maxVal:超过阈值,替换成maxVal
THRESH_BINARY和THRESH_BINARY_INV
THRESH_TRUNC
THRESH_TOZERO和THRESH_TOZERO_INV
import cv2import numpy as npimg=cv2.imread('./2037551.jpg')img1=cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)ret,dst=cv2.threshold(img,180,255,cv2.THRESH_BINARY)cv2.imshow('img',img)
cv2.imshow('gray',img1)
#cv2.imshow('bin',bin)cv2.waitKey(0)

二 阈值类型

thresholdType
在这里插入图片描述

三 自适应阈值

由于光照不均匀以及阴影的存在,只有一个阈值会使得在阴影处的白色被二值化成黑色。

adaptiveThresholdAPI

adaptiveThreshold(img,maxVal,adaptiveMethod,type,blockSie,C)
adaptiveMethod:计算阈值的方法
blockSize:邻近区域的大小
C:常量,应从计算出的平均值或加权平均值中减去;
adaptiveMethod
计算阈值的方法
ADAPTIVE_THRESH_MEAN_C:计算领近区域的平均值
ADAPIVE_THRESH_GAUSSIAN_C:高斯窗口加权平均值
Type:THRESH_BINARY,THRESH_BINARY_INV
import cv2
import numpy as npimg=cv2.imread('./2037551.jpg')
img1=cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)dst=cv2.adaptiveThreshold(img1,255,cv2.ADAPTIVE_THRESH_GAUSSIAN_C,cv2.THRESH_BINARY_INV,11,0)print(dst.shape)cv2.imshow('img',img)
cv2.imshow('img1',img)
cv2.imshow('dst',dst)cv2.waitKey(0)

四 腐蚀

在这里插入图片描述

1 腐蚀运算在这里插入图片描述

2 腐蚀效果

在这里插入图片描述

3 腐蚀API

erode(img,kernel,iterations=1)
import cv2
import numpy as npimg=cv2.imread('./2037551.jpg')kernel=np.ones((3,3),np.uint8)dst=cv2.erode(img,kernel,iterations=1)cv2.imshow('img',img)
cv2.imshow('dst',dst)
cv2.waitKey(0)

六 获取形态学卷积核

卷积核的类型

getStructuringElement(type,size)
Size值为:(3:3)、(5,5)...
MORPH_RECT
MORPH_ELLIPSE
MORPH_CROSS

七 OPenCV 膨胀

膨胀运算
在这里插入图片描述

1 膨胀效果

在这里插入图片描述

2 膨胀API

dilate(img,kernel,iterations=1)

问题
如果是白底黑字,进行腐蚀与膨胀后会怎样?
卷积核是否可以设置为全0?

八 开运算

开运算=腐蚀+膨胀

开运算效果
在这里插入图片描述
开运算API

morphologyEx(img,EORPH_OPEN,kernel)
import cv2
import numpy as npimg=cv2.imread('./2037551.jpg')kernel=cv2.getStructuringElement(cv2.MORPH_RECT,(7,7))#dst=cv2.erode(img,kernel,iterations=1)#膨胀
#dst1=cv2.dilate(img,kernel,iterations=1)dst1=cv2.morphologyEx(img,cv2.MORPH_OPEN,kernel)
#cv2.imshow('dst',dst)
cv2.imshow('dst1',dst1)
cv2.waitKey(0)

九 闭运算

闭运算效果
在这里插入图片描述
闭运算API

morphology(img,MORPH_CLOSE,kernel)

十 形态学剃度

梯度=原图-腐蚀

梯度效果图

梯度API

morphologyEx(img,MORPH_GRADIENT,kernel)
import cv2
import numpy as npimg=cv2.imread('./2037551.jpg')kernel=cv2.getStructuringElement(cv2.MORPH_RECT,(7,7))#梯度
dst1=cv2.morphologyEx(img,cv2.MORPH_CLOSE,kernel)cv2.imshow('img',img)
cv2.imshow('dst',dst1)
cv2.waitKey(0)

十一 顶帽运算

顶帽=原图-开运算

顶帽效果图
在这里插入图片描述
顶帽API

morphologyEx(img,MORPH_TOPHAT,kernel)
import cv2
import numpy as npimg=cv2.imread('./2037551.jpg')kernel=cv2.getStructuringElement(cv2.MORPH_RECT,(19,19))#顶帽
dst1=cv2.morphologyEx(img,cv2.MORPH_TOPHAT,kernel)cv2.imshow('img',img)
cv2.imshow('dst',dst1)
cv2.waitKey(0)

十二 黑帽运算

黑帽=原图-闭运算

黑帽效果图
在这里插入图片描述
黑帽API

morphologyEx(img,MORPH_BLACKHAT,kernel)
import cv2
import numpy as npimg=cv2.imread('./2037551.jpg')kernel=cv2.getStructuringElement(cv2.MORPH_RECT,(19,19))#顶帽
dst1=cv2.morphologyEx(img,cv2.MORPH_BLACKHAT,kernel)cv2.imshow('img',img)
cv2.imshow('dst',dst1)
cv2.waitKey(0)

这篇关于OpenCV形态学的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!


原文地址:
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.chinasem.cn/article/1065260

相关文章

python+OpenCV反投影图像的实现示例详解

《python+OpenCV反投影图像的实现示例详解》:本文主要介绍python+OpenCV反投影图像的实现示例详解,本文通过实例代码图文并茂的形式给大家介绍的非常详细,感兴趣的朋友一起看看吧... 目录一、前言二、什么是反投影图像三、反投影图像的概念四、反向投影的工作原理一、利用反向投影backproj

在PyCharm中安装PyTorch、torchvision和OpenCV详解

《在PyCharm中安装PyTorch、torchvision和OpenCV详解》:本文主要介绍在PyCharm中安装PyTorch、torchvision和OpenCV方式,具有很好的参考价值,... 目录PyCharm安装PyTorch、torchvision和OpenCV安装python安装PyTor

openCV中KNN算法的实现

《openCV中KNN算法的实现》KNN算法是一种简单且常用的分类算法,本文主要介绍了openCV中KNN算法的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的... 目录KNN算法流程使用OpenCV实现KNNOpenCV 是一个开源的跨平台计算机视觉库,它提供了各

OpenCV图像形态学的实现

《OpenCV图像形态学的实现》本文主要介绍了OpenCV图像形态学的实现,包括腐蚀、膨胀、开运算、闭运算、梯度运算、顶帽运算和黑帽运算,文中通过示例代码介绍的非常详细,需要的朋友们下面随着小编来一起... 目录一、图像形态学简介二、腐蚀(Erosion)1. 原理2. OpenCV 实现三、膨胀China编程(

opencv图像处理之指纹验证的实现

《opencv图像处理之指纹验证的实现》本文主要介绍了opencv图像处理之指纹验证的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学... 目录一、简介二、具体案例实现1. 图像显示函数2. 指纹验证函数3. 主函数4、运行结果三、总结一、

python+opencv处理颜色之将目标颜色转换实例代码

《python+opencv处理颜色之将目标颜色转换实例代码》OpenCV是一个的跨平台计算机视觉库,可以运行在Linux、Windows和MacOS操作系统上,:本文主要介绍python+ope... 目录下面是代码+ 效果 + 解释转HSV: 关于颜色总是要转HSV的掩膜再标注总结 目标:将红色的部分滤

Java中的Opencv简介与开发环境部署方法

《Java中的Opencv简介与开发环境部署方法》OpenCV是一个开源的计算机视觉和图像处理库,提供了丰富的图像处理算法和工具,它支持多种图像处理和计算机视觉算法,可以用于物体识别与跟踪、图像分割与... 目录1.Opencv简介Opencv的应用2.Java使用OpenCV进行图像操作opencv安装j

opencv实现像素统计的示例代码

《opencv实现像素统计的示例代码》本文介绍了OpenCV中统计图像像素信息的常用方法和函数,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一... 目录1. 统计像素值的基本信息2. 统计像素值的直方图3. 统计像素值的总和4. 统计非零像素的数量

使用opencv优化图片(画面变清晰)

文章目录 需求影响照片清晰度的因素 实现降噪测试代码 锐化空间锐化Unsharp Masking频率域锐化对比测试 对比度增强常用算法对比测试 需求 对图像进行优化,使其看起来更清晰,同时保持尺寸不变,通常涉及到图像处理技术如锐化、降噪、对比度增强等 影响照片清晰度的因素 影响照片清晰度的因素有很多,主要可以从以下几个方面来分析 1. 拍摄设备 相机传感器:相机传

opencv 滚动条

参数介绍:createTrackbar( trackbarname , "hello" , &alpha_slider ,alpha_max ,  on_trackbar )  ;在标签中显示的文字(提示滑动条的用途) TrackbarName创建的滑动条要放置窗体的名字 “hello”滑动条的取值范围从 0 到 alpha_max (最小值只能为 zero).滑动后的值存放在