R语言数据分析案例27-使用随机森林模型对家庭资产的回归预测分析

本文主要是介绍R语言数据分析案例27-使用随机森林模型对家庭资产的回归预测分析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、研究背景及其意义

家庭资产分析在现代经济学中的重要性不仅限于单个家庭的财务健康状况,它还与整个经济体的发展紧密相关。家庭资产的增长通常反映了国家经济的整体增长,而资产分布的不均则暴露了经济不平等的问题。因此,全球视角下的家庭资产分析可以揭示国际经济动态,有助于在全球范围内制定更有效的财富管理和经济政策。

研究的意义在于:政策制定的依据:通过对家庭资产的研究,可以为政府和政策制定者提供关于经济福利和社会公平的深入洞察。这有助于制定更加有效的经济政策,以促进财富的公平分配。经济结构分析。。。。。

二、文献综述研究

近年来,利用人工智能技术进行预测研究掀起了新浪潮。监督机器学习方法可以自动分析和挖掘已知矿床与勘探数据之间的复杂关系,已被广泛的应用于矿产预测建模。然而,在矿产潜力评价实践中,矿床数量的有限使得监督机器学习模型面临着巨大挑战,限制了模型的表现与泛化性。在本研究中,李全可、陈国雄等人聚焦于各种半监督机器学习模型(例如半监督随机森林和半监督支持向量机),利用半监督学习机制解决矿床稀缺带来的挑战,并提出一种基于半监督生成对抗网络的半监督深度学习矿产预测建模方法,以实现更准确的矿产潜力评价。。。。。

下面,我们将详细介绍数据预处理步骤以及随机森林模型的构建和评估方法。随机森林模型的应用不仅能够提高预测准确性,还能提供对特征重要性的深入洞察,帮助我们更好地理解各影响因素如何共同作用于家庭资产的变化。。。

三、基础理论和研究

随机森林就是通过集成学习的Bagging思想将多棵树集成的一种算法:它的基本单元就是决策树。随机森林的名称中有两个关键词,一个是“随机”,一个就是“森林”。“森林”很好理解,一棵叫做树,那么成百上千棵就可以叫做森林了,其实这也是随机森林的主要思想--集成思想的体现。。。。。

随机森林的训练过程可以分为以下几个步骤:

(1)随机选择一部分数据样本,构建决策树。

(2)随机选择一部分特征,构建决策树。

(3)重复上述步骤,构建多个决策树。

(4)通过投票的方式,将多个决策树的预测结果合并为最终结果。。。。

四、实证分析

本文数据选取为美国财富网站家庭资产的数据集,其中特征为familynum、consump_total、income_total、debt,响应变量为asset。

首先读取数据集并且展示数据前五行:

数据和代码

数据代码完整报告

df<- read.csv("data_clean.csv")
df# 显示数据框的前几行
head(df)
str(df)

接下来查看数据字符类型:

其中familynum:这是一个整数(int)类型的变量,代表家庭成员的数量。consump_total:是一个数值类型的变量,代表家庭的总消费。 

接下来进行数据缺失值查看:

# 绘制热图
ggplot(missing_df, aes(x = row_id, y = variable, fill = value)) +geom_tile() +scale_fill_manual(values = c("Missing" = "red", "Not Missing" = "gray")) +theme_minimal() +labs(x = "Row Number", y = "Variable", fill = "Status", title = "Heatmap of Missing Values")

热图中的深色部分表明数据值“不缺失”(Not Missing),而如果存在缺失值,我们通常会看到标记为其他颜色。。。

接下来进行部分数据可视化:

家庭资产(asset):大多数数据集中在较低的资产值,说明在样本中低资产家庭的数量较多。分布的长尾部分表示有少数家庭拥有很高的资产。总消费消费数据似乎也是右偏的 。。。

box_plots <- df %>%pivot_longer(cols = everything(), names_to = "variables", values_to = "values") %>%ggplot(aes(x = as.factor(variables), y = values)) +geom_boxplot() +facet_wrap(~variables, scales = 'free') +theme_minimal()
print(box_plots)

家庭成员数的分布相对均匀,中位数在2左右,异常值分布在较高的家庭成员数,但这些异常值并不极端。总收入的中位数较低,分布范围相对较广,存在一些高收入的异常值。

 从热力图可知,家庭成员数与其他变量似乎没有显示出很强的相关性。总消费与总收入之间显示出一定的正相关性,这是合理的,因为通常收入水平较高的家庭可能会有更多的消费。。。。

接下来正式进入随机森林建模和预测,这里的训练集和测试集的划分比例为3:7。

# 建立随机森林模型
rf_model <- randomForest(asset ~ ., data = train_data, ntree = 100)
rf_model

从上图可以看得,模型设置了100棵树,并且在每次分裂时尝试了1个变量。 模型中建立了100棵决策树。随机森林是通过结合多棵决策树的预测来提高整体预测准确性和鲁棒性的。平均平方残差约为2.517×10¹²。 

在预测之后对模型进行评价:

表1 随机森林模型预测评价结果

RMSE

 Rsquared

 MAE

1525606.6201528

 0.3679425

792606.7109922

最后可视化一下特征重要性图,在特征中对比一下:

从该图可知,特征按重要性降序排列,具有以下特点:

income_total(总收入): 这个特征在模型中的重要性最高,表现为最长的黄色条形。这意味着总收入在预测家庭资产方面起着最关键的作用。。。。

五、总结与展望

本次实验通过随机森林回归模型分析了影响家庭资产的几个关键变量得到了一些初步的结论

总收入对家庭资产的预测作出了最大的贡献,这表明收入水平是影响家庭资产积累的一个重要因素。总消费也是家庭资产预测的一个重要变量,但其影响力度低于总收入。债务与家庭资产之间存在一定的相关性,尽管其影响不如收入和消费那么显著。。。。

创作不易,希望大家多点赞关注评论!!!(类似代码或报告定制可以私信)

这篇关于R语言数据分析案例27-使用随机森林模型对家庭资产的回归预测分析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1063710

相关文章

Java中流式并行操作parallelStream的原理和使用方法

《Java中流式并行操作parallelStream的原理和使用方法》本文详细介绍了Java中的并行流(parallelStream)的原理、正确使用方法以及在实际业务中的应用案例,并指出在使用并行流... 目录Java中流式并行操作parallelStream0. 问题的产生1. 什么是parallelS

Linux join命令的使用及说明

《Linuxjoin命令的使用及说明》`join`命令用于在Linux中按字段将两个文件进行连接,类似于SQL的JOIN,它需要两个文件按用于匹配的字段排序,并且第一个文件的换行符必须是LF,`jo... 目录一. 基本语法二. 数据准备三. 指定文件的连接key四.-a输出指定文件的所有行五.-o指定输出

Linux jq命令的使用解读

《Linuxjq命令的使用解读》jq是一个强大的命令行工具,用于处理JSON数据,它可以用来查看、过滤、修改、格式化JSON数据,通过使用各种选项和过滤器,可以实现复杂的JSON处理任务... 目录一. 简介二. 选项2.1.2.2-c2.3-r2.4-R三. 字段提取3.1 普通字段3.2 数组字段四.

Linux kill正在执行的后台任务 kill进程组使用详解

《Linuxkill正在执行的后台任务kill进程组使用详解》文章介绍了两个脚本的功能和区别,以及执行这些脚本时遇到的进程管理问题,通过查看进程树、使用`kill`命令和`lsof`命令,分析了子... 目录零. 用到的命令一. 待执行的脚本二. 执行含子进程的脚本,并kill2.1 进程查看2.2 遇到的

详解SpringBoot+Ehcache使用示例

《详解SpringBoot+Ehcache使用示例》本文介绍了SpringBoot中配置Ehcache、自定义get/set方式,并实际使用缓存的过程,文中通过示例代码介绍的非常详细,对大家的学习或者... 目录摘要概念内存与磁盘持久化存储:配置灵活性:编码示例引入依赖:配置ehcache.XML文件:配置

Java 虚拟线程的创建与使用深度解析

《Java虚拟线程的创建与使用深度解析》虚拟线程是Java19中以预览特性形式引入,Java21起正式发布的轻量级线程,本文给大家介绍Java虚拟线程的创建与使用,感兴趣的朋友一起看看吧... 目录一、虚拟线程简介1.1 什么是虚拟线程?1.2 为什么需要虚拟线程?二、虚拟线程与平台线程对比代码对比示例:三

从基础到高级详解Go语言中错误处理的实践指南

《从基础到高级详解Go语言中错误处理的实践指南》Go语言采用了一种独特而明确的错误处理哲学,与其他主流编程语言形成鲜明对比,本文将为大家详细介绍Go语言中错误处理详细方法,希望对大家有所帮助... 目录1 Go 错误处理哲学与核心机制1.1 错误接口设计1.2 错误与异常的区别2 错误创建与检查2.1 基础

Nginx分布式部署流程分析

《Nginx分布式部署流程分析》文章介绍Nginx在分布式部署中的反向代理和负载均衡作用,用于分发请求、减轻服务器压力及解决session共享问题,涵盖配置方法、策略及Java项目应用,并提及分布式事... 目录分布式部署NginxJava中的代理代理分为正向代理和反向代理正向代理反向代理Nginx应用场景

k8s按需创建PV和使用PVC详解

《k8s按需创建PV和使用PVC详解》Kubernetes中,PV和PVC用于管理持久存储,StorageClass实现动态PV分配,PVC声明存储需求并绑定PV,通过kubectl验证状态,注意回收... 目录1.按需创建 PV(使用 StorageClass)创建 StorageClass2.创建 PV

Redis 基本数据类型和使用详解

《Redis基本数据类型和使用详解》String是Redis最基本的数据类型,一个键对应一个值,它的功能十分强大,可以存储字符串、整数、浮点数等多种数据格式,本文给大家介绍Redis基本数据类型和... 目录一、Redis 入门介绍二、Redis 的五大基本数据类型2.1 String 类型2.2 Hash