【CS.AL】算法复杂度分析 —— 渐进符号表示法

2024-06-15 04:52

本文主要是介绍【CS.AL】算法复杂度分析 —— 渐进符号表示法,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

    • 1 概述
    • 2 渐进符号详解
      • 2.1 大O符号(O)
      • 2.2 Ω符号(Ω)
      • 2.3 Θ符号(Θ)
      • 2.4 o符号(o)
      • 2.5 ω符号(ω)
    • 3 具体例子
      • 3.1 插入排序(Insertion Sort)
      • 3.2 二叉搜索树(Binary Search Tree)

在这里插入图片描述

1000.01.CS.AL.1.3-算法基础-渐进符号表示法-Created: 2024-06-13.Thursday17:38

1 概述

渐进符号表示法用于描述算法的时间复杂度和空间复杂度,衡量算法的性能。它可以帮助我们分析和比较不同算法的效率,尤其是当输入规模变大时。常见的渐进符号包括大O符号(O)、Ω符号(Ω)、Θ符号(Θ)、o符号(o)和ω符号(ω)。

2 渐进符号详解

2.1 大O符号(O)

大O符号(Big O Notation) 用于描述算法在最坏情况下的时间复杂度或空间复杂度,表示在输入规模趋近无穷大时,算法的增长率上限。它帮助我们理解算法的效率上限。

定义:算法的时间复杂度为O(f(n)),如果存在正数c和n0,使得对所有n ≥ n0,算法的执行时间T(n)满足T(n) ≤ c * f(n)。

示例

  • 对于线性时间复杂度的算法,如简单的遍历数组,时间复杂度为O(n)。
  • 对于二分查找算法,时间复杂度为O(log n)。

表示法

  • O(1):常数时间复杂度。
  • O(n):线性时间复杂度。
  • O(n²):平方时间复杂度。
  • O(log n):对数时间复杂度。
  • O(n log n):线性对数时间复杂度。

2.2 Ω符号(Ω)

Ω符号(Big Omega Notation) 用于描述算法在最好情况下的时间复杂度或空间复杂度,表示在输入规模趋近无穷大时,算法的增长率下限。它帮助我们理解算法的最低效率。

定义:算法的时间复杂度为Ω(f(n)),如果存在正数c和n0,使得对所有n ≥ n0,算法的执行时间T(n)满足T(n) ≥ c * f(n)。

示例

  • 对于二分查找算法,最好情况是在第一次比较时就找到目标元素,其时间复杂度为Ω(1)。
  • 对于快速排序算法,最好情况是每次都能均匀地将数组分成两部分,其时间复杂度为Ω(n log n)。

表示法

  • Ω(1):常数时间复杂度。
  • Ω(n):线性时间复杂度。
  • Ω(n²):平方时间复杂度。

2.3 Θ符号(Θ)

Θ符号(Big Theta Notation) 用于描述算法在平均情况下的时间复杂度或空间复杂度,表示在输入规模趋近无穷大时,算法的增长率的紧确界限。它帮助我们理解算法的精确效率。

定义:算法的时间复杂度为Θ(f(n)),如果存在正数c1、c2和n0,使得对所有n ≥ n0,算法的执行时间T(n)满足c1 * f(n) ≤ T(n) ≤ c2 * f(n)。

示例

  • 对于简单的遍历数组,时间复杂度为Θ(n)。
  • 对于快速排序算法,平均情况时间复杂度为Θ(n log n)。

表示法

  • Θ(1):常数时间复杂度。
  • Θ(n):线性时间复杂度。
  • Θ(n²):平方时间复杂度。

2.4 o符号(o)

o符号(Small o Notation) 用于描述算法的非渐进上界,表示在输入规模趋近无穷大时,算法的增长率严格小于某个函数。它帮助我们理解算法的上界,但并不包括等于的情况。

定义:算法的时间复杂度为o(f(n)),如果对于任意正数c,存在n0,使得对所有n ≥ n0,算法的执行时间T(n)满足T(n) < c * f(n)。

示例

  • 对于一个执行时间为2n的算法,它的时间复杂度为o(n²)。

表示法

  • o(n):小于线性时间复杂度。
  • o(n²):小于平方时间复杂度。

2.5 ω符号(ω)

ω符号(Small omega Notation) 用于描述算法的非渐进下界,表示在输入规模趋近无穷大时,算法的增长率严格大于某个函数。它帮助我们理解算法的下界,但并不包括等于的情况。

定义:算法的时间复杂度为ω(f(n)),如果对于任意正数c,存在n0,使得对所有n ≥ n0,算法的执行时间T(n)满足T(n) > c * f(n)。

示例

  • 对于一个执行时间为n log n的算法,它的时间复杂度为ω(log n)。

表示法

  • ω(1):大于常数时间复杂度。
  • ω(n):大于线性时间复杂度。
  • ω(log n):大于对数时间复杂度。

3 具体例子

3.1 插入排序(Insertion Sort)

void insertionSort(int arr[], int n) {for (int i = 1; i < n; i++) {int key = arr[i];int j = i - 1;while (j >= 0 && arr[j] > key) {arr[j + 1] = arr[j];j = j - 1;}arr[j + 1] = key;}
}

分析

  • 最坏情况:输入数组为降序,时间复杂度为O(n²)。
  • 最好情况:输入数组为升序,时间复杂度为Ω(n)。
  • 平均情况:时间复杂度为Θ(n²)。

3.2 二叉搜索树(Binary Search Tree)

struct Node {int data;Node* left;Node* right;
};Node* search(Node* root, int key) {if (root == nullptr || root->data == key)return root;if (root->data < key)return search(root->right, key);return search(root->left, key);
}

分析

  • 最坏情况:树退化成链表,时间复杂度为O(n)。
  • 最好情况:树是平衡的,时间复杂度为Ω(log n)。
  • 平均情况:时间复杂度为Θ(log n)。

通过理解这些渐进符号及其应用,我们可以更好地评估算法的效率,选择合适的算法来解决实际问题。

这篇关于【CS.AL】算法复杂度分析 —— 渐进符号表示法的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1062474

相关文章

MySQL设置密码复杂度策略的完整步骤(附代码示例)

《MySQL设置密码复杂度策略的完整步骤(附代码示例)》MySQL密码策略还可能包括密码复杂度的检查,如是否要求密码包含大写字母、小写字母、数字和特殊字符等,:本文主要介绍MySQL设置密码复杂度... 目录前言1. 使用 validate_password 插件1.1 启用 validate_passwo

Android 缓存日志Logcat导出与分析最佳实践

《Android缓存日志Logcat导出与分析最佳实践》本文全面介绍AndroidLogcat缓存日志的导出与分析方法,涵盖按进程、缓冲区类型及日志级别过滤,自动化工具使用,常见问题解决方案和最佳实... 目录android 缓存日志(Logcat)导出与分析全攻略为什么要导出缓存日志?按需过滤导出1. 按

Linux中的HTTPS协议原理分析

《Linux中的HTTPS协议原理分析》文章解释了HTTPS的必要性:HTTP明文传输易被篡改和劫持,HTTPS通过非对称加密协商对称密钥、CA证书认证和混合加密机制,有效防范中间人攻击,保障通信安全... 目录一、什么是加密和解密?二、为什么需要加密?三、常见的加密方式3.1 对称加密3.2非对称加密四、

MySQL中读写分离方案对比分析与选型建议

《MySQL中读写分离方案对比分析与选型建议》MySQL读写分离是提升数据库可用性和性能的常见手段,本文将围绕现实生产环境中常见的几种读写分离模式进行系统对比,希望对大家有所帮助... 目录一、问题背景介绍二、多种解决方案对比2.1 原生mysql主从复制2.2 Proxy层中间件:ProxySQL2.3

python使用Akshare与Streamlit实现股票估值分析教程(图文代码)

《python使用Akshare与Streamlit实现股票估值分析教程(图文代码)》入职测试中的一道题,要求:从Akshare下载某一个股票近十年的财务报表包括,资产负债表,利润表,现金流量表,保存... 目录一、前言二、核心知识点梳理1、Akshare数据获取2、Pandas数据处理3、Matplotl

python panda库从基础到高级操作分析

《pythonpanda库从基础到高级操作分析》本文介绍了Pandas库的核心功能,包括处理结构化数据的Series和DataFrame数据结构,数据读取、清洗、分组聚合、合并、时间序列分析及大数据... 目录1. Pandas 概述2. 基本操作:数据读取与查看3. 索引操作:精准定位数据4. Group

MySQL中EXISTS与IN用法使用与对比分析

《MySQL中EXISTS与IN用法使用与对比分析》在MySQL中,EXISTS和IN都用于子查询中根据另一个查询的结果来过滤主查询的记录,本文将基于工作原理、效率和应用场景进行全面对比... 目录一、基本用法详解1. IN 运算符2. EXISTS 运算符二、EXISTS 与 IN 的选择策略三、性能对比

MySQL 内存使用率常用分析语句

《MySQL内存使用率常用分析语句》用户整理了MySQL内存占用过高的分析方法,涵盖操作系统层确认及数据库层bufferpool、内存模块差值、线程状态、performance_schema性能数据... 目录一、 OS层二、 DB层1. 全局情况2. 内存占js用详情最近连续遇到mysql内存占用过高导致

深度解析Nginx日志分析与499状态码问题解决

《深度解析Nginx日志分析与499状态码问题解决》在Web服务器运维和性能优化过程中,Nginx日志是排查问题的重要依据,本文将围绕Nginx日志分析、499状态码的成因、排查方法及解决方案展开讨论... 目录前言1. Nginx日志基础1.1 Nginx日志存放位置1.2 Nginx日志格式2. 499

Olingo分析和实践之EDM 辅助序列化器详解(最佳实践)

《Olingo分析和实践之EDM辅助序列化器详解(最佳实践)》EDM辅助序列化器是ApacheOlingoOData框架中无需完整EDM模型的智能序列化工具,通过运行时类型推断实现灵活数据转换,适用... 目录概念与定义什么是 EDM 辅助序列化器?核心概念设计目标核心特点1. EDM 信息可选2. 智能类