【CS.AL】算法复杂度分析 —— 渐进符号表示法

2024-06-15 04:52

本文主要是介绍【CS.AL】算法复杂度分析 —— 渐进符号表示法,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

    • 1 概述
    • 2 渐进符号详解
      • 2.1 大O符号(O)
      • 2.2 Ω符号(Ω)
      • 2.3 Θ符号(Θ)
      • 2.4 o符号(o)
      • 2.5 ω符号(ω)
    • 3 具体例子
      • 3.1 插入排序(Insertion Sort)
      • 3.2 二叉搜索树(Binary Search Tree)

在这里插入图片描述

1000.01.CS.AL.1.3-算法基础-渐进符号表示法-Created: 2024-06-13.Thursday17:38

1 概述

渐进符号表示法用于描述算法的时间复杂度和空间复杂度,衡量算法的性能。它可以帮助我们分析和比较不同算法的效率,尤其是当输入规模变大时。常见的渐进符号包括大O符号(O)、Ω符号(Ω)、Θ符号(Θ)、o符号(o)和ω符号(ω)。

2 渐进符号详解

2.1 大O符号(O)

大O符号(Big O Notation) 用于描述算法在最坏情况下的时间复杂度或空间复杂度,表示在输入规模趋近无穷大时,算法的增长率上限。它帮助我们理解算法的效率上限。

定义:算法的时间复杂度为O(f(n)),如果存在正数c和n0,使得对所有n ≥ n0,算法的执行时间T(n)满足T(n) ≤ c * f(n)。

示例

  • 对于线性时间复杂度的算法,如简单的遍历数组,时间复杂度为O(n)。
  • 对于二分查找算法,时间复杂度为O(log n)。

表示法

  • O(1):常数时间复杂度。
  • O(n):线性时间复杂度。
  • O(n²):平方时间复杂度。
  • O(log n):对数时间复杂度。
  • O(n log n):线性对数时间复杂度。

2.2 Ω符号(Ω)

Ω符号(Big Omega Notation) 用于描述算法在最好情况下的时间复杂度或空间复杂度,表示在输入规模趋近无穷大时,算法的增长率下限。它帮助我们理解算法的最低效率。

定义:算法的时间复杂度为Ω(f(n)),如果存在正数c和n0,使得对所有n ≥ n0,算法的执行时间T(n)满足T(n) ≥ c * f(n)。

示例

  • 对于二分查找算法,最好情况是在第一次比较时就找到目标元素,其时间复杂度为Ω(1)。
  • 对于快速排序算法,最好情况是每次都能均匀地将数组分成两部分,其时间复杂度为Ω(n log n)。

表示法

  • Ω(1):常数时间复杂度。
  • Ω(n):线性时间复杂度。
  • Ω(n²):平方时间复杂度。

2.3 Θ符号(Θ)

Θ符号(Big Theta Notation) 用于描述算法在平均情况下的时间复杂度或空间复杂度,表示在输入规模趋近无穷大时,算法的增长率的紧确界限。它帮助我们理解算法的精确效率。

定义:算法的时间复杂度为Θ(f(n)),如果存在正数c1、c2和n0,使得对所有n ≥ n0,算法的执行时间T(n)满足c1 * f(n) ≤ T(n) ≤ c2 * f(n)。

示例

  • 对于简单的遍历数组,时间复杂度为Θ(n)。
  • 对于快速排序算法,平均情况时间复杂度为Θ(n log n)。

表示法

  • Θ(1):常数时间复杂度。
  • Θ(n):线性时间复杂度。
  • Θ(n²):平方时间复杂度。

2.4 o符号(o)

o符号(Small o Notation) 用于描述算法的非渐进上界,表示在输入规模趋近无穷大时,算法的增长率严格小于某个函数。它帮助我们理解算法的上界,但并不包括等于的情况。

定义:算法的时间复杂度为o(f(n)),如果对于任意正数c,存在n0,使得对所有n ≥ n0,算法的执行时间T(n)满足T(n) < c * f(n)。

示例

  • 对于一个执行时间为2n的算法,它的时间复杂度为o(n²)。

表示法

  • o(n):小于线性时间复杂度。
  • o(n²):小于平方时间复杂度。

2.5 ω符号(ω)

ω符号(Small omega Notation) 用于描述算法的非渐进下界,表示在输入规模趋近无穷大时,算法的增长率严格大于某个函数。它帮助我们理解算法的下界,但并不包括等于的情况。

定义:算法的时间复杂度为ω(f(n)),如果对于任意正数c,存在n0,使得对所有n ≥ n0,算法的执行时间T(n)满足T(n) > c * f(n)。

示例

  • 对于一个执行时间为n log n的算法,它的时间复杂度为ω(log n)。

表示法

  • ω(1):大于常数时间复杂度。
  • ω(n):大于线性时间复杂度。
  • ω(log n):大于对数时间复杂度。

3 具体例子

3.1 插入排序(Insertion Sort)

void insertionSort(int arr[], int n) {for (int i = 1; i < n; i++) {int key = arr[i];int j = i - 1;while (j >= 0 && arr[j] > key) {arr[j + 1] = arr[j];j = j - 1;}arr[j + 1] = key;}
}

分析

  • 最坏情况:输入数组为降序,时间复杂度为O(n²)。
  • 最好情况:输入数组为升序,时间复杂度为Ω(n)。
  • 平均情况:时间复杂度为Θ(n²)。

3.2 二叉搜索树(Binary Search Tree)

struct Node {int data;Node* left;Node* right;
};Node* search(Node* root, int key) {if (root == nullptr || root->data == key)return root;if (root->data < key)return search(root->right, key);return search(root->left, key);
}

分析

  • 最坏情况:树退化成链表,时间复杂度为O(n)。
  • 最好情况:树是平衡的,时间复杂度为Ω(log n)。
  • 平均情况:时间复杂度为Θ(log n)。

通过理解这些渐进符号及其应用,我们可以更好地评估算法的效率,选择合适的算法来解决实际问题。

这篇关于【CS.AL】算法复杂度分析 —— 渐进符号表示法的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1062474

相关文章

怎样通过分析GC日志来定位Java进程的内存问题

《怎样通过分析GC日志来定位Java进程的内存问题》:本文主要介绍怎样通过分析GC日志来定位Java进程的内存问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、GC 日志基础配置1. 启用详细 GC 日志2. 不同收集器的日志格式二、关键指标与分析维度1.

Java中的雪花算法Snowflake解析与实践技巧

《Java中的雪花算法Snowflake解析与实践技巧》本文解析了雪花算法的原理、Java实现及生产实践,涵盖ID结构、位运算技巧、时钟回拨处理、WorkerId分配等关键点,并探讨了百度UidGen... 目录一、雪花算法核心原理1.1 算法起源1.2 ID结构详解1.3 核心特性二、Java实现解析2.

MySQL中的表连接原理分析

《MySQL中的表连接原理分析》:本文主要介绍MySQL中的表连接原理分析,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1、背景2、环境3、表连接原理【1】驱动表和被驱动表【2】内连接【3】外连接【4编程】嵌套循环连接【5】join buffer4、总结1、背景

python中Hash使用场景分析

《python中Hash使用场景分析》Python的hash()函数用于获取对象哈希值,常用于字典和集合,不可变类型可哈希,可变类型不可,常见算法包括除法、乘法、平方取中和随机数哈希,各有优缺点,需根... 目录python中的 Hash除法哈希算法乘法哈希算法平方取中法随机数哈希算法小结在Python中,

Java Stream的distinct去重原理分析

《JavaStream的distinct去重原理分析》Javastream中的distinct方法用于去除流中的重复元素,它返回一个包含过滤后唯一元素的新流,该方法会根据元素的hashcode和eq... 目录一、distinct 的基础用法与核心特性二、distinct 的底层实现原理1. 顺序流中的去重

关于MyISAM和InnoDB对比分析

《关于MyISAM和InnoDB对比分析》:本文主要介绍关于MyISAM和InnoDB对比分析,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录开篇:从交通规则看存储引擎选择理解存储引擎的基本概念技术原理对比1. 事务支持:ACID的守护者2. 锁机制:并发控制的艺

MyBatis Plus 中 update_time 字段自动填充失效的原因分析及解决方案(最新整理)

《MyBatisPlus中update_time字段自动填充失效的原因分析及解决方案(最新整理)》在使用MyBatisPlus时,通常我们会在数据库表中设置create_time和update... 目录前言一、问题现象二、原因分析三、总结:常见原因与解决方法对照表四、推荐写法前言在使用 MyBATis

Python主动抛出异常的各种用法和场景分析

《Python主动抛出异常的各种用法和场景分析》在Python中,我们不仅可以捕获和处理异常,还可以主动抛出异常,也就是以类的方式自定义错误的类型和提示信息,这在编程中非常有用,下面我将详细解释主动抛... 目录一、为什么要主动抛出异常?二、基本语法:raise关键字基本示例三、raise的多种用法1. 抛

github打不开的问题分析及解决

《github打不开的问题分析及解决》:本文主要介绍github打不开的问题分析及解决,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、找到github.com域名解析的ip地址二、找到github.global.ssl.fastly.net网址解析的ip地址三

Mysql的主从同步/复制的原理分析

《Mysql的主从同步/复制的原理分析》:本文主要介绍Mysql的主从同步/复制的原理分析,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录为什么要主从同步?mysql主从同步架构有哪些?Mysql主从复制的原理/整体流程级联复制架构为什么好?Mysql主从复制注意