【CS.AL】算法复杂度分析 —— 渐进符号表示法

2024-06-15 04:52

本文主要是介绍【CS.AL】算法复杂度分析 —— 渐进符号表示法,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

    • 1 概述
    • 2 渐进符号详解
      • 2.1 大O符号(O)
      • 2.2 Ω符号(Ω)
      • 2.3 Θ符号(Θ)
      • 2.4 o符号(o)
      • 2.5 ω符号(ω)
    • 3 具体例子
      • 3.1 插入排序(Insertion Sort)
      • 3.2 二叉搜索树(Binary Search Tree)

在这里插入图片描述

1000.01.CS.AL.1.3-算法基础-渐进符号表示法-Created: 2024-06-13.Thursday17:38

1 概述

渐进符号表示法用于描述算法的时间复杂度和空间复杂度,衡量算法的性能。它可以帮助我们分析和比较不同算法的效率,尤其是当输入规模变大时。常见的渐进符号包括大O符号(O)、Ω符号(Ω)、Θ符号(Θ)、o符号(o)和ω符号(ω)。

2 渐进符号详解

2.1 大O符号(O)

大O符号(Big O Notation) 用于描述算法在最坏情况下的时间复杂度或空间复杂度,表示在输入规模趋近无穷大时,算法的增长率上限。它帮助我们理解算法的效率上限。

定义:算法的时间复杂度为O(f(n)),如果存在正数c和n0,使得对所有n ≥ n0,算法的执行时间T(n)满足T(n) ≤ c * f(n)。

示例

  • 对于线性时间复杂度的算法,如简单的遍历数组,时间复杂度为O(n)。
  • 对于二分查找算法,时间复杂度为O(log n)。

表示法

  • O(1):常数时间复杂度。
  • O(n):线性时间复杂度。
  • O(n²):平方时间复杂度。
  • O(log n):对数时间复杂度。
  • O(n log n):线性对数时间复杂度。

2.2 Ω符号(Ω)

Ω符号(Big Omega Notation) 用于描述算法在最好情况下的时间复杂度或空间复杂度,表示在输入规模趋近无穷大时,算法的增长率下限。它帮助我们理解算法的最低效率。

定义:算法的时间复杂度为Ω(f(n)),如果存在正数c和n0,使得对所有n ≥ n0,算法的执行时间T(n)满足T(n) ≥ c * f(n)。

示例

  • 对于二分查找算法,最好情况是在第一次比较时就找到目标元素,其时间复杂度为Ω(1)。
  • 对于快速排序算法,最好情况是每次都能均匀地将数组分成两部分,其时间复杂度为Ω(n log n)。

表示法

  • Ω(1):常数时间复杂度。
  • Ω(n):线性时间复杂度。
  • Ω(n²):平方时间复杂度。

2.3 Θ符号(Θ)

Θ符号(Big Theta Notation) 用于描述算法在平均情况下的时间复杂度或空间复杂度,表示在输入规模趋近无穷大时,算法的增长率的紧确界限。它帮助我们理解算法的精确效率。

定义:算法的时间复杂度为Θ(f(n)),如果存在正数c1、c2和n0,使得对所有n ≥ n0,算法的执行时间T(n)满足c1 * f(n) ≤ T(n) ≤ c2 * f(n)。

示例

  • 对于简单的遍历数组,时间复杂度为Θ(n)。
  • 对于快速排序算法,平均情况时间复杂度为Θ(n log n)。

表示法

  • Θ(1):常数时间复杂度。
  • Θ(n):线性时间复杂度。
  • Θ(n²):平方时间复杂度。

2.4 o符号(o)

o符号(Small o Notation) 用于描述算法的非渐进上界,表示在输入规模趋近无穷大时,算法的增长率严格小于某个函数。它帮助我们理解算法的上界,但并不包括等于的情况。

定义:算法的时间复杂度为o(f(n)),如果对于任意正数c,存在n0,使得对所有n ≥ n0,算法的执行时间T(n)满足T(n) < c * f(n)。

示例

  • 对于一个执行时间为2n的算法,它的时间复杂度为o(n²)。

表示法

  • o(n):小于线性时间复杂度。
  • o(n²):小于平方时间复杂度。

2.5 ω符号(ω)

ω符号(Small omega Notation) 用于描述算法的非渐进下界,表示在输入规模趋近无穷大时,算法的增长率严格大于某个函数。它帮助我们理解算法的下界,但并不包括等于的情况。

定义:算法的时间复杂度为ω(f(n)),如果对于任意正数c,存在n0,使得对所有n ≥ n0,算法的执行时间T(n)满足T(n) > c * f(n)。

示例

  • 对于一个执行时间为n log n的算法,它的时间复杂度为ω(log n)。

表示法

  • ω(1):大于常数时间复杂度。
  • ω(n):大于线性时间复杂度。
  • ω(log n):大于对数时间复杂度。

3 具体例子

3.1 插入排序(Insertion Sort)

void insertionSort(int arr[], int n) {for (int i = 1; i < n; i++) {int key = arr[i];int j = i - 1;while (j >= 0 && arr[j] > key) {arr[j + 1] = arr[j];j = j - 1;}arr[j + 1] = key;}
}

分析

  • 最坏情况:输入数组为降序,时间复杂度为O(n²)。
  • 最好情况:输入数组为升序,时间复杂度为Ω(n)。
  • 平均情况:时间复杂度为Θ(n²)。

3.2 二叉搜索树(Binary Search Tree)

struct Node {int data;Node* left;Node* right;
};Node* search(Node* root, int key) {if (root == nullptr || root->data == key)return root;if (root->data < key)return search(root->right, key);return search(root->left, key);
}

分析

  • 最坏情况:树退化成链表,时间复杂度为O(n)。
  • 最好情况:树是平衡的,时间复杂度为Ω(log n)。
  • 平均情况:时间复杂度为Θ(log n)。

通过理解这些渐进符号及其应用,我们可以更好地评估算法的效率,选择合适的算法来解决实际问题。

这篇关于【CS.AL】算法复杂度分析 —— 渐进符号表示法的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1062474

相关文章

使用雪花算法产生id导致前端精度缺失问题解决方案

《使用雪花算法产生id导致前端精度缺失问题解决方案》雪花算法由Twitter提出,设计目的是生成唯一的、递增的ID,下面:本文主要介绍使用雪花算法产生id导致前端精度缺失问题的解决方案,文中通过代... 目录一、问题根源二、解决方案1. 全局配置Jackson序列化规则2. 实体类必须使用Long封装类3.

基于Go语言实现Base62编码的三种方式以及对比分析

《基于Go语言实现Base62编码的三种方式以及对比分析》Base62编码是一种在字符编码中使用62个字符的编码方式,在计算机科学中,,Go语言是一种静态类型、编译型语言,它由Google开发并开源,... 目录一、标准库现状与解决方案1. 标准库对比表2. 解决方案完整实现代码(含边界处理)二、关键实现细

PostgreSQL 序列(Sequence) 与 Oracle 序列对比差异分析

《PostgreSQL序列(Sequence)与Oracle序列对比差异分析》PostgreSQL和Oracle都提供了序列(Sequence)功能,但在实现细节和使用方式上存在一些重要差异,... 目录PostgreSQL 序列(Sequence) 与 oracle 序列对比一 基本语法对比1.1 创建序

Springboot实现推荐系统的协同过滤算法

《Springboot实现推荐系统的协同过滤算法》协同过滤算法是一种在推荐系统中广泛使用的算法,用于预测用户对物品(如商品、电影、音乐等)的偏好,从而实现个性化推荐,下面给大家介绍Springboot... 目录前言基本原理 算法分类 计算方法应用场景 代码实现 前言协同过滤算法(Collaborativ

慢sql提前分析预警和动态sql替换-Mybatis-SQL

《慢sql提前分析预警和动态sql替换-Mybatis-SQL》为防止慢SQL问题而开发的MyBatis组件,该组件能够在开发、测试阶段自动分析SQL语句,并在出现慢SQL问题时通过Ducc配置实现动... 目录背景解决思路开源方案调研设计方案详细设计使用方法1、引入依赖jar包2、配置组件XML3、核心配

Java NoClassDefFoundError运行时错误分析解决

《JavaNoClassDefFoundError运行时错误分析解决》在Java开发中,NoClassDefFoundError是一种常见的运行时错误,它通常表明Java虚拟机在尝试加载一个类时未能... 目录前言一、问题分析二、报错原因三、解决思路检查类路径配置检查依赖库检查类文件调试类加载器问题四、常见

Python中的Walrus运算符分析示例详解

《Python中的Walrus运算符分析示例详解》Python中的Walrus运算符(:=)是Python3.8引入的一个新特性,允许在表达式中同时赋值和返回值,它的核心作用是减少重复计算,提升代码简... 目录1. 在循环中避免重复计算2. 在条件判断中同时赋值变量3. 在列表推导式或字典推导式中简化逻辑

Java程序进程起来了但是不打印日志的原因分析

《Java程序进程起来了但是不打印日志的原因分析》:本文主要介绍Java程序进程起来了但是不打印日志的原因分析,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录Java程序进程起来了但是不打印日志的原因1、日志配置问题2、日志文件权限问题3、日志文件路径问题4、程序

Java字符串操作技巧之语法、示例与应用场景分析

《Java字符串操作技巧之语法、示例与应用场景分析》在Java算法题和日常开发中,字符串处理是必备的核心技能,本文全面梳理Java中字符串的常用操作语法,结合代码示例、应用场景和避坑指南,可快速掌握字... 目录引言1. 基础操作1.1 创建字符串1.2 获取长度1.3 访问字符2. 字符串处理2.1 子字

openCV中KNN算法的实现

《openCV中KNN算法的实现》KNN算法是一种简单且常用的分类算法,本文主要介绍了openCV中KNN算法的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的... 目录KNN算法流程使用OpenCV实现KNNOpenCV 是一个开源的跨平台计算机视觉库,它提供了各