新一代大核卷积反超ViT和ConvNet!同参数量下性能、精度、速度完胜

本文主要是介绍新一代大核卷积反超ViT和ConvNet!同参数量下性能、精度、速度完胜,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

大核卷积网络是CNN的一种变体,也是深度学习领域的一种重要技术,它使用较大的卷积核来处理图像数据,以提高模型对视觉信息的理解和处理能力。

这种类型的网络能够捕捉到更多的空间信息,因为它的大步长和大感受野可以一次性覆盖图像的更多区域。比如美团提出的PeLK网络,内核大小可以达到101x101,同参数量下性能反超 ViT,目前已被CVPR 2024收录。

更值得一提的,大核卷积网络不仅在性能上有所提升,在ImageNet分类等任务上,也展现出了优于ViT和ConvNet架构的效果。比如腾讯+港中文提出的UniRepLKNet,只用ImageNet-22K预训练,精度和速度SOTA,ImageNet达到88%。

当然效果惊人的成果远不止这些,我这次挑选了10个大核卷积网络最新创新方案,开源的项目代码都有,供有论文需求的同学参考学习。

论文原文以及开源代码需要的同学看文末

PeLK: Parameter-efficient Large Kernel ConvNets with Peripheral Convolution

方法:论文提出了外围卷积,通过参数共享有效减少了密集网格卷积 90% 以上的参数数量,并设法将内核尺寸扩大到极大。在此基础上,作者提出了参数高效的大核网络(PeLK)。

创新点:

  • 密集网格卷积(Dense Grid Convolution)相较于条纹卷积(Stripe Convolution)具有持续的优势,无论是在多种核大小下还是在不同的任务中,密集网格卷积都能够表现出更好的性能。

  • 引入人类外周视觉机制(Peripheral Vision)的概念来提高大核卷积网络的参数效率,通过参数共享有效地减少了密集网格卷积的参数数量,并且能够将卷积的复杂性从O(K^2)降低到O(log K)。

UniRepLKNet: A Universal Perception Large-Kernel ConvNet for Audio, Video, Point Cloud, Time-Series and Image Recognition

方法:论文探索了大卷积核的卷积神经网络(ConvNet)的架构设计和在多模态领域的通用感知能力,填补了现有大卷积核ConvNet的架构设计不足和在非视觉领域的应用研究空白,通过提出四个架构准则设计了UniRepLKNet,并在图像识别、时间序列预测和音频识别等任务上取得了领先的性能,验证了大卷积核的重要性和ConvNet的通用感知能力。

创新点:

  • 大核ConvNet架构设计:
    • 提出了四个关于大核ConvNet设计的指导原则,其中核心原则是利用大核与小核的本质区别,即大核可以在不加深网络的情况下实现更广阔的感受野。

    • 根据这些指导原则,提出的大核ConvNet在图像识别任务中取得了领先的性能,相比于其他强大的竞争模型,具有更好的性能和更高的速度。

  • 大核ConvNet在多模态领域的普适感知能力:
    • 发现大核ConvNet在原本不擅长的领域具有出色的性能表现。通过特定的模态相关预处理方法,该模型在时间序列预测和音频识别任务上实现了业界领先的性能,即使没有进行模态特定的架构定制化。

    • 证明了大核ConvNet在多模态任务中的卓越性能,为ConvNet在新领域的应用开辟了新的可能性。

LSKNet: Large Selective Kernel Network for Remote Sensing Object Detection

方法:论文主要介绍了一种用于遥感目标检测的新方法,即大型选择性核网络(LSKNet)。LSKNet的整体架构基于最近流行的结构,并使用了重复的构建块。作者通过定义Rc作为期望选择RF区域与GT边界框区域的比例来研究每个目标类别的感受野范围。

创新点:

  • 作者首次尝试将大核卷积应用于遥感目标检测,并研究了其在这一领域的重要性。通过将大核卷积分解为两个深度卷积核,作者提出了一种适用于遥感的LSKNet架构,能够充分利用遥感图像的特点,实现对不同对象类型的广泛和可适应的上下文理解。

  • 作者提出了一种空间选择机制,用于在不同尺度上从大卷积核中选择特征图。通过通道平均池化和通道最大池化,作者有效地提取了特征之间的空间关系,并使用卷积层将池化特征转换为空间注意力图。然后,通过相应的空间选择掩码,对分解的大核卷积特征进行加权并融合,以获得最终的关注特征。

Shift-ConvNets: Small Convolutional Kernel with Large Kernel Effects

方法:论文提出了一种新的操作符,通过正则卷积实现大卷积核效果,从而在广泛的设备范围内实现了CNN的最新进展。论文还提出了一种新的剪枝操作,通过粗粒度剪枝实现了稀疏组卷积。同时,论文还提出了一种基于偏移操作的算子来改进卷积操作,并将其应用于改进的模块结构中。

创新点:

  • 通过使用shift-wise操作,作者实现了使用标准卷积进行大卷积核效果,并通过剪枝得到了稀疏组卷积。这一方法能够将大卷积核的效果与标准CNN的先进性结合起来,拓展了CNN的应用领域。

  • 作者提出了一种新的shift-wise操作方法,通过将输入特征进行分组和位移,模拟多个卷积核尺寸,从而创建多个输出分支。然后,将这些输出分支合并为一个单一的分支。这种方法能够在保持整体网络结构不变的同时,不断优化数据流形的依赖关系。

关注下方《学姐带你玩AI》🚀🚀🚀

回复“大核卷积”获取全部论文+代码

码字不易,欢迎大家点赞评论收藏

这篇关于新一代大核卷积反超ViT和ConvNet!同参数量下性能、精度、速度完胜的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1062451

相关文章

Zabbix在MySQL性能监控方面的运用及最佳实践记录

《Zabbix在MySQL性能监控方面的运用及最佳实践记录》Zabbix通过自定义脚本和内置模板监控MySQL核心指标(连接、查询、资源、复制),支持自动发现多实例及告警通知,结合可视化仪表盘,可有效... 目录一、核心监控指标及配置1. 关键监控指标示例2. 配置方法二、自动发现与多实例管理1. 实践步骤

MySQL深分页进行性能优化的常见方法

《MySQL深分页进行性能优化的常见方法》在Web应用中,分页查询是数据库操作中的常见需求,然而,在面对大型数据集时,深分页(deeppagination)却成为了性能优化的一个挑战,在本文中,我们将... 目录引言:深分页,真的只是“翻页慢”那么简单吗?一、背景介绍二、深分页的性能问题三、业务场景分析四、

MySQL 多列 IN 查询之语法、性能与实战技巧(最新整理)

《MySQL多列IN查询之语法、性能与实战技巧(最新整理)》本文详解MySQL多列IN查询,对比传统OR写法,强调其简洁高效,适合批量匹配复合键,通过联合索引、分批次优化提升性能,兼容多种数据库... 目录一、基础语法:多列 IN 的两种写法1. 直接值列表2. 子查询二、对比传统 OR 的写法三、性能分析

Linux系统性能检测命令详解

《Linux系统性能检测命令详解》本文介绍了Linux系统常用的监控命令(如top、vmstat、iostat、htop等)及其参数功能,涵盖进程状态、内存使用、磁盘I/O、系统负载等多维度资源监控,... 目录toppsuptimevmstatIOStatiotopslabtophtopdstatnmon

JVisualVM之Java性能监控与调优利器详解

《JVisualVM之Java性能监控与调优利器详解》本文将详细介绍JVisualVM的使用方法,并结合实际案例展示如何利用它进行性能调优,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全... 目录1. JVisualVM简介2. JVisualVM的安装与启动2.1 启动JVisualVM2

Java使用MethodHandle来替代反射,提高性能问题

《Java使用MethodHandle来替代反射,提高性能问题》:本文主要介绍Java使用MethodHandle来替代反射,提高性能问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑... 目录一、认识MethodHandle1、简介2、使用方式3、与反射的区别二、示例1、基本使用2、(重要)

使用雪花算法产生id导致前端精度缺失问题解决方案

《使用雪花算法产生id导致前端精度缺失问题解决方案》雪花算法由Twitter提出,设计目的是生成唯一的、递增的ID,下面:本文主要介绍使用雪花算法产生id导致前端精度缺失问题的解决方案,文中通过代... 目录一、问题根源二、解决方案1. 全局配置Jackson序列化规则2. 实体类必须使用Long封装类3.

PyTorch高级特性与性能优化方式

《PyTorch高级特性与性能优化方式》:本文主要介绍PyTorch高级特性与性能优化方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、自动化机制1.自动微分机制2.动态计算图二、性能优化1.内存管理2.GPU加速3.多GPU训练三、分布式训练1.分布式数据

Java的"伪泛型"变"真泛型"后对性能的影响

《Java的伪泛型变真泛型后对性能的影响》泛型擦除本质上就是擦除与泛型相关的一切信息,例如参数化类型、类型变量等,Javac还将在需要时进行类型检查及强制类型转换,甚至在必要时会合成桥方法,这篇文章主... 目录1、真假泛型2、性能影响泛型存在于Java源代码中,在编译为字节码文件之前都会进行泛型擦除(ty

Python如何使用__slots__实现节省内存和性能优化

《Python如何使用__slots__实现节省内存和性能优化》你有想过,一个小小的__slots__能让你的Python类内存消耗直接减半吗,没错,今天咱们要聊的就是这个让人眼前一亮的技巧,感兴趣的... 目录背景:内存吃得满满的类__slots__:你的内存管理小助手举个大概的例子:看看效果如何?1.