[C#]使用C#部署yolov10的目标检测tensorrt模型

2024-06-14 16:36

本文主要是介绍[C#]使用C#部署yolov10的目标检测tensorrt模型,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

【测试通过环境】

win10 x64
vs2019
cuda11.7+cudnn8.8.0
TensorRT-8.6.1.6
opencvsharp==4.9.0
.NET Framework4.7.2

NVIDIA GeForce RTX 2070 Super

cuda和tensorrt版本和上述环境版本不一样的需要重新编译TensorRtExtern.dll,TensorRtExtern源码地址:TensorRT-CSharp-API/src/TensorRtExtern at TensorRtSharp2.0 · guojin-yan/TensorRT-CSharp-API · GitHub

Windows版 CUDA安装参考:Windows版 CUDA安装_win cuda安装-CSDN博客

【特别注意】

tensorrt依赖不同硬件需要自己从onnx转换tensorrt,转换就是调用api实现,流程如下

下载源码:https://github.com/THU-MIG/yolov10

并按照官方要求安装好环境:

conda create -n yolov10 python=3.9
conda activate yolov10
pip install -r requirements.txt
pip install -e .

下载yolov10n.pt模型:https://huggingface.co/jameslahm/yolov10n

将Pytorch导出onnx:

# End-to-End ONNX
yolo export model=jameslahm/yolov10{n/s/m/b/l/x} format=onnx opset=13 simplify

将onnx转成tensorrt模型:

trtexec --onnx=yolov10n/s/m/b/l/x.onnx --saveEngine=yolov10n/s/m/b/l/x.engine --fp16

最后将转换好的tenorrt模型使用C#源码即可

【视频演示和解说】

使用C#部署yolov10的目标检测tensorrt模型_哔哩哔哩_bilibili测试环境:win10 x64vs2019cuda11.7+cudnn8.8.0TensorRT-8.6.1.6opencvsharp==4.9.0.NET Framework4.7.2特别注意:环境一定要对上,否则无法正常运行,具体可以参考我的博客和录制视频。博客地址:https://blog.csdn.net/FL1623863129/article/details/139682652, 视频播放量 1、弹幕量 0、点赞数 0、投硬币枚数 0、收藏人数 0、转发人数 0, 视频作者 未来自主研究中心, 作者简介 未来自主研究中心,相关视频:用C#部署yolov8的tensorrt模型进行目标检测winform最快检测速度,使用纯opencv部署yolov8目标检测模型onnx,[深度学习][目标检测][面试提问]Batch Normalization批归一化,使用C++部署yolov9的tensorrt模型进行目标检测,labelme json转yolo工具用于目标检测训练数据集使用教程,基于yolov8+bytetrack实现目标追踪视频演示,【yolo标题党的无奈】TRT快不等于TRT快- -!,C++使用纯opencv部署yolov9的onnx模型,yolov5自动标注工具自动打标签目标检测自动标注使用教程,C#实现全网yolov7目前最快winform目标检测icon-default.png?t=N7T8https://www.bilibili.com/video/BV17S411P7he/?vd_source=989ae2b903ea1b5acebbe2c4c4a635ee

【部分实现源码】

using System;
using System.Collections.Generic;
using System.ComponentModel;
using System.Data;
using System.Drawing;
using System.Linq;
using System.Text;
using System.Threading.Tasks;
using System.Windows.Forms;
using FIRC;
using OpenCvSharp;
using TrtCommon;
using TensorRtSharp;
using TensorRtSharp.Custom;
using System.Diagnostics;namespace WindowsFormsApp1
{public partial class Form1 : Form{public Form1(){InitializeComponent();}private void button1_Click(object sender, EventArgs e){Yolov10Det detector = new Yolov10Det("yolov10n.engine");Mat image1 = Cv2.ImRead(@"E:\person.jpg");List<DetResult> detResults = detector.Predict(new List<Mat> { image1 });Mat re_image1 = Visualize.DrawDetResult(detResults[0], image1);Cv2.ImShow("image1", re_image1);Cv2.WaitKey(0);}private void button2_Click(object sender, EventArgs e){}private void button3_Click(object sender, EventArgs e){Yolov10Det detector = new Yolov10Det("yolov10n.engine");VideoCapture capture = new VideoCapture(0);if (!capture.IsOpened()){Console.WriteLine("video not open!");return;}Mat frame = new Mat();var sw = new Stopwatch();int fps = 0;while (true){capture.Read(frame);if (frame.Empty()){Console.WriteLine("data is empty!");break;}sw.Start();List<DetResult> detResults = detector.Predict(new List<Mat> { frame });Mat resultImg = Visualize.DrawDetResult(detResults[0], frame);sw.Stop();fps = Convert.ToInt32(1 / sw.Elapsed.TotalSeconds);sw.Reset();Cv2.PutText(resultImg, "FPS=" + fps, new OpenCvSharp.Point(30, 30), HersheyFonts.HersheyComplex, 1.0, new Scalar(255, 0, 0), 3);//显示结果Cv2.ImShow("Result", resultImg);int key = Cv2.WaitKey(10);if (key == 27)break;}capture.Release();}}
}

【演示源码下载地址】https://download.csdn.net/download/FL1623863129/89432589

注意源码提供上面对应环境的dll,只需要安装上面一样cuda+cudnn和tensorrt版本即可正常运行。如果您不安装一样版本不能正常运行。此时需要重新编译TensorRtExtern.dll,此外由于tensorrt依赖硬件不一样电脑可能无法共用tensorrt模型,所以必须要重新转换onnx模型到engine才可以运行。

这篇关于[C#]使用C#部署yolov10的目标检测tensorrt模型的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1060938

相关文章

使用Python实现IP地址和端口状态检测与监控

《使用Python实现IP地址和端口状态检测与监控》在网络运维和服务器管理中,IP地址和端口的可用性监控是保障业务连续性的基础需求,本文将带你用Python从零打造一个高可用IP监控系统,感兴趣的小伙... 目录概述:为什么需要IP监控系统使用步骤说明1. 环境准备2. 系统部署3. 核心功能配置系统效果展

使用Java将各种数据写入Excel表格的操作示例

《使用Java将各种数据写入Excel表格的操作示例》在数据处理与管理领域,Excel凭借其强大的功能和广泛的应用,成为了数据存储与展示的重要工具,在Java开发过程中,常常需要将不同类型的数据,本文... 目录前言安装免费Java库1. 写入文本、或数值到 Excel单元格2. 写入数组到 Excel表格

redis中使用lua脚本的原理与基本使用详解

《redis中使用lua脚本的原理与基本使用详解》在Redis中使用Lua脚本可以实现原子性操作、减少网络开销以及提高执行效率,下面小编就来和大家详细介绍一下在redis中使用lua脚本的原理... 目录Redis 执行 Lua 脚本的原理基本使用方法使用EVAL命令执行 Lua 脚本使用EVALSHA命令

C#如何调用C++库

《C#如何调用C++库》:本文主要介绍C#如何调用C++库方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录方法一:使用P/Invoke1. 导出C++函数2. 定义P/Invoke签名3. 调用C++函数方法二:使用C++/CLI作为桥接1. 创建C++/CL

Java 中的 @SneakyThrows 注解使用方法(简化异常处理的利与弊)

《Java中的@SneakyThrows注解使用方法(简化异常处理的利与弊)》为了简化异常处理,Lombok提供了一个强大的注解@SneakyThrows,本文将详细介绍@SneakyThro... 目录1. @SneakyThrows 简介 1.1 什么是 Lombok?2. @SneakyThrows

使用Python和Pyecharts创建交互式地图

《使用Python和Pyecharts创建交互式地图》在数据可视化领域,创建交互式地图是一种强大的方式,可以使受众能够以引人入胜且信息丰富的方式探索地理数据,下面我们看看如何使用Python和Pyec... 目录简介Pyecharts 简介创建上海地图代码说明运行结果总结简介在数据可视化领域,创建交互式地

Java Stream流使用案例深入详解

《JavaStream流使用案例深入详解》:本文主要介绍JavaStream流使用案例详解,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录前言1. Lambda1.1 语法1.2 没参数只有一条语句或者多条语句1.3 一个参数只有一条语句或者多

Java Spring 中 @PostConstruct 注解使用原理及常见场景

《JavaSpring中@PostConstruct注解使用原理及常见场景》在JavaSpring中,@PostConstruct注解是一个非常实用的功能,它允许开发者在Spring容器完全初... 目录一、@PostConstruct 注解概述二、@PostConstruct 注解的基本使用2.1 基本代

C#使用StackExchange.Redis实现分布式锁的两种方式介绍

《C#使用StackExchange.Redis实现分布式锁的两种方式介绍》分布式锁在集群的架构中发挥着重要的作用,:本文主要介绍C#使用StackExchange.Redis实现分布式锁的... 目录自定义分布式锁获取锁释放锁自动续期StackExchange.Redis分布式锁获取锁释放锁自动续期分布式

springboot使用Scheduling实现动态增删启停定时任务教程

《springboot使用Scheduling实现动态增删启停定时任务教程》:本文主要介绍springboot使用Scheduling实现动态增删启停定时任务教程,具有很好的参考价值,希望对大家有... 目录1、配置定时任务需要的线程池2、创建ScheduledFuture的包装类3、注册定时任务,增加、删