Spark的Streaming + Flume进行数据采集(flume主动推送或者Spark Stream主动拉取)

2024-06-14 13:58

本文主要是介绍Spark的Streaming + Flume进行数据采集(flume主动推送或者Spark Stream主动拉取),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Spark的Streaming + Flume进行数据采集(flume主动推送或者Spark Stream主动拉取)

1、针对国外的开源技术,还是学会看国外的英文说明来的直接,迅速,这里简单贴一下如何看:

2、进入到flume的conf目录,创建一个flume-spark-push.sh的文件:

[hadoop@slaver1 conf]$ vim flume-spark-push.sh

配置一下这个文件,flume使用avro的。

# example.conf: A single-node Flume configuration# Name the components on this agent
#定义这个agent中各组件的名字,给那三个组件sources,sinks,channels取个名字,是一个逻辑代号:
#a1是agent的代表。
a1.sources = r1
a1.channels = c1
a1.sinks = k1# Describe/configure the source 描述和配置source组件:r1
#类型, 从网络端口接收数据,在本机启动, 所以localhost, type=spoolDir采集目录源,目录里有就采
#type是类型,是采集源的具体实现,这里是接受网络端口的,netcat可以从一个网络端口接受数据的。netcat在linux里的程序就是nc,可以学习一下。
#bind绑定本机localhost。port端口号为44444。a1.sources.r1.type = exec
a1.sources.r1.bind = tail -f /home/hadoop/data_hadoop/spark-flume/wctotal.log
a1.sources.r1.shell = /bin/bash -c# Describe the sink 描述和配置sink组件:k1
#type,下沉类型,使用logger,将数据打印到屏幕上面。
#a1.sinks.k1.type = logger# Use a channel which buffers events in memory 描述和配置channel组件,此处使用是内存缓存的方式
#type类型是内存memory。
#下沉的时候是一批一批的, 下沉的时候是一个个eventChannel参数解释:
#capacity:默认该通道中最大的可以存储的event数量,1000是代表1000条数据。
#trasactionCapacity:每次最大可以从source中拿到或者送到sink中的event数量。
a1.channels.c1.type = memory
a1.channels.c1.capacity = 1000
a1.channels.c1.transactionCapacity = 100# define sink
a1.sinks.k1.type= avro
a1.sinks.k1.hostname = slaver1
a1.sinks.k1.port = 9999# Bind the source and sink to the channel 描述和配置source  channel   sink之间的连接关系
#将sources和sinks绑定到channel上面。
a1.sources.r1.channels = c1
a1.sinks.k1.channel = c1

3、然后去Spark的github查看项目demo:https://github.com/apache/spark

具体案例如:https://github.com/apache/spark/blob/v1.5.1/examples/src/main/scala/org/apache/spark/examples/streaming/FlumeEventCount.scala

代码如下所示:

import org.apache.spark._
import org.apache.spark.streaming._
import org.apache.spark.streaming.StreamingContext._
import org.apache.spark.streaming.flume._
import org.apache.spark.util.IntParamval ssc = new StreamingContext(sc, Seconds(5))val stream = FlumeUtils.createStream(ssc, slaver1, 9999, StorageLevel.MEMORY_ONLY_SER_2)stream.count().map(cnt => "Received " + cnt + " flume events." ).print()ssc.start()             // Start the computation
ssc.awaitTermination()  // Wait for the computation to terminate

导入flume的包的时候出现问题,找不到包:import org.apache.spark.streaming.flume._

scala> import org.apache.spark.streaming.flume._
<console>:28: error: object flume is not a member of package org.apache.spark.streamingimport org.apache.spark.streaming.flume._

 由于没有搭建maven项目,在命令行需要导入jar包,这里先放置一下,稍后继续记笔记。

待续.......

posted @ 2018-04-24 10:53 别先生 阅读( ...) 评论( ...) 编辑 收藏

这篇关于Spark的Streaming + Flume进行数据采集(flume主动推送或者Spark Stream主动拉取)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1060598

相关文章

Linux下利用select实现串口数据读取过程

《Linux下利用select实现串口数据读取过程》文章介绍Linux中使用select、poll或epoll实现串口数据读取,通过I/O多路复用机制在数据到达时触发读取,避免持续轮询,示例代码展示设... 目录示例代码(使用select实现)代码解释总结在 linux 系统里,我们可以借助 select、

分析 Java Stream 的 peek使用实践与副作用处理方案

《分析JavaStream的peek使用实践与副作用处理方案》StreamAPI的peek操作是中间操作,用于观察元素但不终止流,其副作用风险包括线程安全、顺序混乱及性能问题,合理使用场景有限... 目录一、peek 操作的本质:有状态的中间操作二、副作用的定义与风险场景1. 并行流下的线程安全问题2. 顺

C#使用iText获取PDF的trailer数据的代码示例

《C#使用iText获取PDF的trailer数据的代码示例》开发程序debug的时候,看到了PDF有个trailer数据,挺有意思,于是考虑用代码把它读出来,那么就用到我们常用的iText框架了,所... 目录引言iText 核心概念C# 代码示例步骤 1: 确保已安装 iText步骤 2: C# 代码程

Pandas处理缺失数据的方式汇总

《Pandas处理缺失数据的方式汇总》许多教程中的数据与现实世界中的数据有很大不同,现实世界中的数据很少是干净且同质的,本文我们将讨论处理缺失数据的一些常规注意事项,了解Pandas如何表示缺失数据,... 目录缺失数据约定的权衡Pandas 中的缺失数据None 作为哨兵值NaN:缺失的数值数据Panda

C++中处理文本数据char与string的终极对比指南

《C++中处理文本数据char与string的终极对比指南》在C++编程中char和string是两种用于处理字符数据的类型,但它们在使用方式和功能上有显著的不同,:本文主要介绍C++中处理文本数... 目录1. 基本定义与本质2. 内存管理3. 操作与功能4. 性能特点5. 使用场景6. 相互转换核心区别

Python进行word模板内容替换的实现示例

《Python进行word模板内容替换的实现示例》本文介绍了使用Python自动化处理Word模板文档的常用方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友... 目录技术背景与需求场景核心工具库介绍1.获取你的word模板内容2.正常文本内容的替换3.表格内容的

python库pydantic数据验证和设置管理库的用途

《python库pydantic数据验证和设置管理库的用途》pydantic是一个用于数据验证和设置管理的Python库,它主要利用Python类型注解来定义数据模型的结构和验证规则,本文给大家介绍p... 目录主要特点和用途:Field数值验证参数总结pydantic 是一个让你能够 confidentl

Git进行版本控制的实战指南

《Git进行版本控制的实战指南》Git是一种分布式版本控制系统,广泛应用于软件开发中,它可以记录和管理项目的历史修改,并支持多人协作开发,通过Git,开发者可以轻松地跟踪代码变更、合并分支、回退版本等... 目录一、Git核心概念解析二、环境搭建与配置1. 安装Git(Windows示例)2. 基础配置(必

JAVA实现亿级千万级数据顺序导出的示例代码

《JAVA实现亿级千万级数据顺序导出的示例代码》本文主要介绍了JAVA实现亿级千万级数据顺序导出的示例代码,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面... 前提:主要考虑控制内存占用空间,避免出现同时导出,导致主程序OOM问题。实现思路:A.启用线程池

Git打标签从本地创建到远端推送的详细流程

《Git打标签从本地创建到远端推送的详细流程》在软件开发中,Git标签(Tag)是为发布版本、标记里程碑量身定制的“快照锚点”,它能永久记录项目历史中的关键节点,然而,仅创建本地标签往往不够,如何将其... 目录一、标签的两种“形态”二、本地创建与查看1. 打附注标http://www.chinasem.cn