Spark的Streaming + Flume进行数据采集(flume主动推送或者Spark Stream主动拉取)

2024-06-14 13:58

本文主要是介绍Spark的Streaming + Flume进行数据采集(flume主动推送或者Spark Stream主动拉取),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Spark的Streaming + Flume进行数据采集(flume主动推送或者Spark Stream主动拉取)

1、针对国外的开源技术,还是学会看国外的英文说明来的直接,迅速,这里简单贴一下如何看:

2、进入到flume的conf目录,创建一个flume-spark-push.sh的文件:

[hadoop@slaver1 conf]$ vim flume-spark-push.sh

配置一下这个文件,flume使用avro的。

# example.conf: A single-node Flume configuration# Name the components on this agent
#定义这个agent中各组件的名字,给那三个组件sources,sinks,channels取个名字,是一个逻辑代号:
#a1是agent的代表。
a1.sources = r1
a1.channels = c1
a1.sinks = k1# Describe/configure the source 描述和配置source组件:r1
#类型, 从网络端口接收数据,在本机启动, 所以localhost, type=spoolDir采集目录源,目录里有就采
#type是类型,是采集源的具体实现,这里是接受网络端口的,netcat可以从一个网络端口接受数据的。netcat在linux里的程序就是nc,可以学习一下。
#bind绑定本机localhost。port端口号为44444。a1.sources.r1.type = exec
a1.sources.r1.bind = tail -f /home/hadoop/data_hadoop/spark-flume/wctotal.log
a1.sources.r1.shell = /bin/bash -c# Describe the sink 描述和配置sink组件:k1
#type,下沉类型,使用logger,将数据打印到屏幕上面。
#a1.sinks.k1.type = logger# Use a channel which buffers events in memory 描述和配置channel组件,此处使用是内存缓存的方式
#type类型是内存memory。
#下沉的时候是一批一批的, 下沉的时候是一个个eventChannel参数解释:
#capacity:默认该通道中最大的可以存储的event数量,1000是代表1000条数据。
#trasactionCapacity:每次最大可以从source中拿到或者送到sink中的event数量。
a1.channels.c1.type = memory
a1.channels.c1.capacity = 1000
a1.channels.c1.transactionCapacity = 100# define sink
a1.sinks.k1.type= avro
a1.sinks.k1.hostname = slaver1
a1.sinks.k1.port = 9999# Bind the source and sink to the channel 描述和配置source  channel   sink之间的连接关系
#将sources和sinks绑定到channel上面。
a1.sources.r1.channels = c1
a1.sinks.k1.channel = c1

3、然后去Spark的github查看项目demo:https://github.com/apache/spark

具体案例如:https://github.com/apache/spark/blob/v1.5.1/examples/src/main/scala/org/apache/spark/examples/streaming/FlumeEventCount.scala

代码如下所示:

import org.apache.spark._
import org.apache.spark.streaming._
import org.apache.spark.streaming.StreamingContext._
import org.apache.spark.streaming.flume._
import org.apache.spark.util.IntParamval ssc = new StreamingContext(sc, Seconds(5))val stream = FlumeUtils.createStream(ssc, slaver1, 9999, StorageLevel.MEMORY_ONLY_SER_2)stream.count().map(cnt => "Received " + cnt + " flume events." ).print()ssc.start()             // Start the computation
ssc.awaitTermination()  // Wait for the computation to terminate

导入flume的包的时候出现问题,找不到包:import org.apache.spark.streaming.flume._

scala> import org.apache.spark.streaming.flume._
<console>:28: error: object flume is not a member of package org.apache.spark.streamingimport org.apache.spark.streaming.flume._

 由于没有搭建maven项目,在命令行需要导入jar包,这里先放置一下,稍后继续记笔记。

待续.......

posted @ 2018-04-24 10:53 别先生 阅读( ...) 评论( ...) 编辑 收藏

这篇关于Spark的Streaming + Flume进行数据采集(flume主动推送或者Spark Stream主动拉取)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1060598

相关文章

SQL Server修改数据库名及物理数据文件名操作步骤

《SQLServer修改数据库名及物理数据文件名操作步骤》在SQLServer中重命名数据库是一个常见的操作,但需要确保用户具有足够的权限来执行此操作,:本文主要介绍SQLServer修改数据... 目录一、背景介绍二、操作步骤2.1 设置为单用户模式(断开连接)2.2 修改数据库名称2.3 查找逻辑文件名

canal实现mysql数据同步的详细过程

《canal实现mysql数据同步的详细过程》:本文主要介绍canal实现mysql数据同步的详细过程,本文通过实例图文相结合给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的... 目录1、canal下载2、mysql同步用户创建和授权3、canal admin安装和启动4、canal

Python主动抛出异常的各种用法和场景分析

《Python主动抛出异常的各种用法和场景分析》在Python中,我们不仅可以捕获和处理异常,还可以主动抛出异常,也就是以类的方式自定义错误的类型和提示信息,这在编程中非常有用,下面我将详细解释主动抛... 目录一、为什么要主动抛出异常?二、基本语法:raise关键字基本示例三、raise的多种用法1. 抛

使用SpringBoot整合Sharding Sphere实现数据脱敏的示例

《使用SpringBoot整合ShardingSphere实现数据脱敏的示例》ApacheShardingSphere数据脱敏模块,通过SQL拦截与改写实现敏感信息加密存储,解决手动处理繁琐及系统改... 目录痛点一:痛点二:脱敏配置Quick Start——Spring 显示配置:1.引入依赖2.创建脱敏

Linux使用scp进行远程目录文件复制的详细步骤和示例

《Linux使用scp进行远程目录文件复制的详细步骤和示例》在Linux系统中,scp(安全复制协议)是一个使用SSH(安全外壳协议)进行文件和目录安全传输的命令,它允许在远程主机之间复制文件和目录,... 目录1. 什么是scp?2. 语法3. 示例示例 1: 复制本地目录到远程主机示例 2: 复制远程主

详解如何使用Python构建从数据到文档的自动化工作流

《详解如何使用Python构建从数据到文档的自动化工作流》这篇文章将通过真实工作场景拆解,为大家展示如何用Python构建自动化工作流,让工具代替人力完成这些数字苦力活,感兴趣的小伙伴可以跟随小编一起... 目录一、Excel处理:从数据搬运工到智能分析师二、PDF处理:文档工厂的智能生产线三、邮件自动化:

Python数据分析与可视化的全面指南(从数据清洗到图表呈现)

《Python数据分析与可视化的全面指南(从数据清洗到图表呈现)》Python是数据分析与可视化领域中最受欢迎的编程语言之一,凭借其丰富的库和工具,Python能够帮助我们快速处理、分析数据并生成高质... 目录一、数据采集与初步探索二、数据清洗的七种武器1. 缺失值处理策略2. 异常值检测与修正3. 数据

pandas实现数据concat拼接的示例代码

《pandas实现数据concat拼接的示例代码》pandas.concat用于合并DataFrame或Series,本文主要介绍了pandas实现数据concat拼接的示例代码,具有一定的参考价值,... 目录语法示例:使用pandas.concat合并数据默认的concat:参数axis=0,join=

C#代码实现解析WTGPS和BD数据

《C#代码实现解析WTGPS和BD数据》在现代的导航与定位应用中,准确解析GPS和北斗(BD)等卫星定位数据至关重要,本文将使用C#语言实现解析WTGPS和BD数据,需要的可以了解下... 目录一、代码结构概览1. 核心解析方法2. 位置信息解析3. 经纬度转换方法4. 日期和时间戳解析5. 辅助方法二、L

使用Python和Matplotlib实现可视化字体轮廓(从路径数据到矢量图形)

《使用Python和Matplotlib实现可视化字体轮廓(从路径数据到矢量图形)》字体设计和矢量图形处理是编程中一个有趣且实用的领域,通过Python的matplotlib库,我们可以轻松将字体轮廓... 目录背景知识字体轮廓的表示实现步骤1. 安装依赖库2. 准备数据3. 解析路径指令4. 绘制图形关键