tensorflow泰坦尼克号沉船数据预测模型

2024-06-14 08:38

本文主要是介绍tensorflow泰坦尼克号沉船数据预测模型,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

首先下载数据
https://www.kaggle.com/c/titanic/data
kaggle上面的数据

import pandas as pd
import numpy as np
import os,sys
os.getcwd()
data = pd.read_csv(’./tt/train.csv’)
data.columns
data = data[[‘Survived’, ‘Pclass’, ‘Sex’, ‘Age’, ‘SibSp’,
‘Parch’, ‘Fare’, ‘Cabin’, ‘Embarked’]]
data[‘Age’] = data[‘Age’].fillna(data[‘Age’].mean())
data[‘Cabin’] = pd.factorize(data.Cabin)[0]
data.fillna(0,inplace = True)
data[‘p1’] = np.array(data[‘Pclass’] == 1).astype(np.int32)

data[‘p2’] = np.array(data[‘Pclass’] == 2).astype(np.int32)

data[‘p3’] = np.array(data[‘Pclass’] == 3).astype(np.int32)
del data[‘Pclass’]
data.Embarked.unique()

data[‘e1’] = np.array(data[‘Embarked’] == ‘S’).astype(np.int32)

data[‘e2’] = np.array(data[‘Embarked’] == ‘C’).astype(np.int32)

data[‘e3’] = np.array(data[‘Embarked’] == ‘Q’).astype(np.int32)

del data[‘Embarked’]

data[‘Sex’] = [1 if x == ‘male’ else 0 for x in data.Sex]

data.values.dtype
data_train = data[[ ‘Sex’, ‘Age’, ‘SibSp’,
‘Parch’, ‘Fare’, ‘Cabin’, ‘p1’,‘p2’,‘p3’,‘e1’,‘e2’,‘e3’]]
data_target = data[‘Survived’].values.reshape(len(data),1)

np.shape(data_train),np.shape(data_target)

import tensorflow as tf

x = tf.placeholder(“float”,shape=[None,12])
y = tf.placeholder(“float”,shape=[None,1])

weight = tf.Variable(tf.random_normal([12,1]))
bias = tf.Variable(tf.random_normal([1]))
output = tf.matmul(x,weight) + bias
pred = tf.cast(tf.sigmoid(output)>0.5,tf.float32)

loss = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(labels = y,logits = output))

loss = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(labels = y,logits = output))

train_step = tf.train.GradientDescentOptimizer(0.0003).minimize(loss)

accuracy = tf.reduce_mean(tf.cast(tf.equal(pred,y),tf.float32))

data_test = pd.read_csv(’./tt/test.csv’)

data_test.column

data_test.columns

In[42]:

date_test = data_test[[‘Pclass’, ‘Sex’, ‘Age’, ‘SibSp’, ‘Parch’,
‘Fare’, ‘Cabin’, ‘Embarked’]].copy()

In[43]:

data_test

In[44]:

data_test = data_test[[‘Pclass’, ‘Sex’, ‘Age’, ‘SibSp’, ‘Parch’,
‘Fare’, ‘Cabin’, ‘Embarked’]]

In[51]:

data_test

In[46]:

data_test[‘Age’] = data_test[‘Age’].fillna(data[‘Age’].mean())

In[47]:

data_test[‘Age’] = data_test[‘Age’].fillna(data_test[‘Age’].mean())

In[48]:

data_test

In[49]:

data_test[‘Age’] = data_test[‘Age’].fillna(data_test[‘Age’].mean())

In[50]:

data_test[‘Cabin’] = pd.factorize(data_test.Cabin)[0]

In[52]:

data_test = data_test[[‘Pclass’, ‘Sex’, ‘Age’, ‘SibSp’, ‘Parch’,
‘Fare’, ‘Cabin’, ‘Embarked’]].copy()
data_test[‘Cabin’] = pd.factorize(data_test.Cabin)[0]

In[53]:

data_test[‘Age’] = data_test[‘Age’].fillna(data_test[‘Age’].mean())

In[54]:

data_test.fillna(0,inplace = True)

In[55]:

data_test[‘Sex’] = [1 if x == ‘male’ else 0 for x in data_test.Sex]

In[56]:

data_test[‘p1’] = np.array(data_test[‘Pclass’] == 1).astype(np.int32)
data_test[‘p2’] = np.array(data_test[‘Pclass’] == 2).astype(np.int32)
data_test[‘p3’] = np.array(data_test[‘Pclass’] == 3).astype(np.int32)
data_test[‘e1’] = np.array(data_test[‘Embarked’] == ‘S’).astype(np.int32)
data_test[‘e2’] = np.array(data_test[‘Embarked’] == ‘C’).astype(np.int32)
data_test[‘e3’] = np.array(data_test[‘Embarked’] == ‘Q’).astype(np.int32)
del data_test[‘Pclass’]
del data_test[‘Embarked’]

In[57]:

test_lable = pd.read_csv(’./tt/gender.csv’)
test_lable = np.reshape(test_lable.Survived.values.astype(np.float32),(418,1))

In[58]:

test_lable = pd.read_csv(’./tt/gender.csv’)
test_lable = np.reshape(test_lable.Survived.values.astype(np.float32),(418,1))

In[59]:

sess = tf.Session()
sess.run(tf.global_variables_initializer())
loss_train = []
train_acc = []
test_acc = []

In[61]:

for i in range(25000):
index = np.random.permutation(len(data_target))
data_train = data_train[index]
data_target = data_target[index]
for n in range(len(data_target)//100 + 1):
batch_xs = data_train[n100:n100 + 100]
batch_ys = data_target[n100:n100 + 100]
sess.run(train_step,feed_dict={x:batch_xs,y:batch_ys})
if i % 1000==0:
loss_temp = sess.run(loss,feed_dict={x: batch_xs,y: batch_ys})
loss_train.append(loss_temp)
train_acc_temp = sess.run(accuracy,feed_dict={x: batch_xs,y: batch_ys})
train_acc.append(train_acc_temp)
print(loss_temp,train_acc_temp)

In[62]:

for i in range(25000):
index = np.random.permutation(len(data_target))
data_train = data_train[index]
data_target = data_target[index]
for n in range(len(data_target)//100 + 1):
batch_xs = data_train[n100:n100 + 100]
batch_ys = data_target[n100:n100 + 100]
sess.run(train_step,feed_dict={x:batch_xs,y:batch_ys})
if i%1000 == 0:
loss_temp = sess.run(loss,feed_dict={x: batch_xs,y: batch_ys})
loss_train.append(loss_temp)
train_acc_temp = sess.run(accuracy,feed_dict={x: batch_xs,y: batch_ys})
train_acc.append(train_acc_temp)
print(loss_temp,train_acc_temp)

In[64]:

for i in range(25000):
index = np.random.permutation(len(data_target))
data_train = data_train[index]
data_target = data_target[index]
for n in range(len(data_target)//100 + 1):
batch_xs = data_train[n100:n100 + 100]
batch_ys = data_target[n100:n100 + 100]
sess.run(train_step,feed_dict={x:batch_xs,y:batch_ys})
if i%1000 == 0:
loss_temp = sess.run(loss,feed_dict={x: batch_xs,y: batch_ys})
loss_train.append(loss_temp)
train_acc_temp = sess.run(accuracy,feed_dict={x: batch_xs,y: batch_ys})
train_acc.append(train_acc_temp)
print(loss_temp,train_acc_temp)

In[65]:

for i in range(25000):
index = np.random.permutation(len(data_target))
data_train = data_train[index]
data_target = data_target[index]
for n in range(len(data_target)//100 + 1):
batch_xs = data_train[n100:n100 + 100]
batch_ys = data_target[n100:n100 + 100]
sess.run(train_step,feed_dict={x:batch_xs,y:batch_ys})
if i%1000 == 0:
loss_temp = sess.run(loss,feed_dict={x: batch_xs,y: batch_ys})
loss_train.append(loss_temp)
train_acc_temp = sess.run(accuracy,feed_dict={x: batch_xs,y: batch_ys})
train_acc.append(train_acc_temp)
print(loss_temp,train_acc_temp)

In[66]:

for i in range(25000):
#index = np.random.permutation(len(data_target))
#data_train = data_train[index]
#data_target = data_target[index]
for n in range(len(data_target)//100 + 1):
batch_xs = data_train[n100:n100 + 100]
batch_ys = data_target[n100:n100 + 100]
sess.run(train_step,feed_dict={x:batch_xs,y:batch_ys})
if i%1000 == 0:
loss_temp = sess.run(loss,feed_dict={x: batch_xs,y: batch_ys})
loss_train.append(loss_temp)
train_acc_temp = sess.run(accuracy,feed_dict={x: batch_xs,y: batch_ys})
train_acc.append(train_acc_temp)
print(loss_temp,train_acc_temp)

In[67]:

import matplotlib.pyplot as plt

In[68]:

plt.plot(loss_train,‘k-’)
plt.title(‘train loss’)
plt.show()

In[69]:

plt.plot(train_acc,‘b–’,label = ‘train_acc’)
plt.plot(test_acc,‘r–’,label = ‘test_acc’)
plt.title(‘acc’)
plt.legend()
plt.show()

这篇关于tensorflow泰坦尼克号沉船数据预测模型的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1059913

相关文章

SpringBoot分段处理List集合多线程批量插入数据方式

《SpringBoot分段处理List集合多线程批量插入数据方式》文章介绍如何处理大数据量List批量插入数据库的优化方案:通过拆分List并分配独立线程处理,结合Spring线程池与异步方法提升效率... 目录项目场景解决方案1.实体类2.Mapper3.spring容器注入线程池bejsan对象4.创建

PHP轻松处理千万行数据的方法详解

《PHP轻松处理千万行数据的方法详解》说到处理大数据集,PHP通常不是第一个想到的语言,但如果你曾经需要处理数百万行数据而不让服务器崩溃或内存耗尽,你就会知道PHP用对了工具有多强大,下面小编就... 目录问题的本质php 中的数据流处理:为什么必不可少生成器:内存高效的迭代方式流量控制:避免系统过载一次性

Python的Darts库实现时间序列预测

《Python的Darts库实现时间序列预测》Darts一个集统计、机器学习与深度学习模型于一体的Python时间序列预测库,本文主要介绍了Python的Darts库实现时间序列预测,感兴趣的可以了解... 目录目录一、什么是 Darts?二、安装与基本配置安装 Darts导入基础模块三、时间序列数据结构与

C#实现千万数据秒级导入的代码

《C#实现千万数据秒级导入的代码》在实际开发中excel导入很常见,现代社会中很容易遇到大数据处理业务,所以本文我就给大家分享一下千万数据秒级导入怎么实现,文中有详细的代码示例供大家参考,需要的朋友可... 目录前言一、数据存储二、处理逻辑优化前代码处理逻辑优化后的代码总结前言在实际开发中excel导入很

MyBatis-plus处理存储json数据过程

《MyBatis-plus处理存储json数据过程》文章介绍MyBatis-Plus3.4.21处理对象与集合的差异:对象可用内置Handler配合autoResultMap,集合需自定义处理器继承F... 目录1、如果是对象2、如果需要转换的是List集合总结对象和集合分两种情况处理,目前我用的MP的版本

GSON框架下将百度天气JSON数据转JavaBean

《GSON框架下将百度天气JSON数据转JavaBean》这篇文章主要为大家详细介绍了如何在GSON框架下实现将百度天气JSON数据转JavaBean,文中的示例代码讲解详细,感兴趣的小伙伴可以了解下... 目录前言一、百度天气jsON1、请求参数2、返回参数3、属性映射二、GSON属性映射实战1、类对象映

C# LiteDB处理时间序列数据的高性能解决方案

《C#LiteDB处理时间序列数据的高性能解决方案》LiteDB作为.NET生态下的轻量级嵌入式NoSQL数据库,一直是时间序列处理的优选方案,本文将为大家大家简单介绍一下LiteDB处理时间序列数... 目录为什么选择LiteDB处理时间序列数据第一章:LiteDB时间序列数据模型设计1.1 核心设计原则

Java+AI驱动实现PDF文件数据提取与解析

《Java+AI驱动实现PDF文件数据提取与解析》本文将和大家分享一套基于AI的体检报告智能评估方案,详细介绍从PDF上传、内容提取到AI分析、数据存储的全流程自动化实现方法,感兴趣的可以了解下... 目录一、核心流程:从上传到评估的完整链路二、第一步:解析 PDF,提取体检报告内容1. 引入依赖2. 封装

MySQL中查询和展示LONGBLOB类型数据的技巧总结

《MySQL中查询和展示LONGBLOB类型数据的技巧总结》在MySQL中LONGBLOB是一种二进制大对象(BLOB)数据类型,用于存储大量的二进制数据,:本文主要介绍MySQL中查询和展示LO... 目录前言1. 查询 LONGBLOB 数据的大小2. 查询并展示 LONGBLOB 数据2.1 转换为十

使用SpringBoot+InfluxDB实现高效数据存储与查询

《使用SpringBoot+InfluxDB实现高效数据存储与查询》InfluxDB是一个开源的时间序列数据库,特别适合处理带有时间戳的监控数据、指标数据等,下面详细介绍如何在SpringBoot项目... 目录1、项目介绍2、 InfluxDB 介绍3、Spring Boot 配置 InfluxDB4、I