tensorflow泰坦尼克号沉船数据预测模型

2024-06-14 08:38

本文主要是介绍tensorflow泰坦尼克号沉船数据预测模型,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

首先下载数据
https://www.kaggle.com/c/titanic/data
kaggle上面的数据

import pandas as pd
import numpy as np
import os,sys
os.getcwd()
data = pd.read_csv(’./tt/train.csv’)
data.columns
data = data[[‘Survived’, ‘Pclass’, ‘Sex’, ‘Age’, ‘SibSp’,
‘Parch’, ‘Fare’, ‘Cabin’, ‘Embarked’]]
data[‘Age’] = data[‘Age’].fillna(data[‘Age’].mean())
data[‘Cabin’] = pd.factorize(data.Cabin)[0]
data.fillna(0,inplace = True)
data[‘p1’] = np.array(data[‘Pclass’] == 1).astype(np.int32)

data[‘p2’] = np.array(data[‘Pclass’] == 2).astype(np.int32)

data[‘p3’] = np.array(data[‘Pclass’] == 3).astype(np.int32)
del data[‘Pclass’]
data.Embarked.unique()

data[‘e1’] = np.array(data[‘Embarked’] == ‘S’).astype(np.int32)

data[‘e2’] = np.array(data[‘Embarked’] == ‘C’).astype(np.int32)

data[‘e3’] = np.array(data[‘Embarked’] == ‘Q’).astype(np.int32)

del data[‘Embarked’]

data[‘Sex’] = [1 if x == ‘male’ else 0 for x in data.Sex]

data.values.dtype
data_train = data[[ ‘Sex’, ‘Age’, ‘SibSp’,
‘Parch’, ‘Fare’, ‘Cabin’, ‘p1’,‘p2’,‘p3’,‘e1’,‘e2’,‘e3’]]
data_target = data[‘Survived’].values.reshape(len(data),1)

np.shape(data_train),np.shape(data_target)

import tensorflow as tf

x = tf.placeholder(“float”,shape=[None,12])
y = tf.placeholder(“float”,shape=[None,1])

weight = tf.Variable(tf.random_normal([12,1]))
bias = tf.Variable(tf.random_normal([1]))
output = tf.matmul(x,weight) + bias
pred = tf.cast(tf.sigmoid(output)>0.5,tf.float32)

loss = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(labels = y,logits = output))

loss = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(labels = y,logits = output))

train_step = tf.train.GradientDescentOptimizer(0.0003).minimize(loss)

accuracy = tf.reduce_mean(tf.cast(tf.equal(pred,y),tf.float32))

data_test = pd.read_csv(’./tt/test.csv’)

data_test.column

data_test.columns

In[42]:

date_test = data_test[[‘Pclass’, ‘Sex’, ‘Age’, ‘SibSp’, ‘Parch’,
‘Fare’, ‘Cabin’, ‘Embarked’]].copy()

In[43]:

data_test

In[44]:

data_test = data_test[[‘Pclass’, ‘Sex’, ‘Age’, ‘SibSp’, ‘Parch’,
‘Fare’, ‘Cabin’, ‘Embarked’]]

In[51]:

data_test

In[46]:

data_test[‘Age’] = data_test[‘Age’].fillna(data[‘Age’].mean())

In[47]:

data_test[‘Age’] = data_test[‘Age’].fillna(data_test[‘Age’].mean())

In[48]:

data_test

In[49]:

data_test[‘Age’] = data_test[‘Age’].fillna(data_test[‘Age’].mean())

In[50]:

data_test[‘Cabin’] = pd.factorize(data_test.Cabin)[0]

In[52]:

data_test = data_test[[‘Pclass’, ‘Sex’, ‘Age’, ‘SibSp’, ‘Parch’,
‘Fare’, ‘Cabin’, ‘Embarked’]].copy()
data_test[‘Cabin’] = pd.factorize(data_test.Cabin)[0]

In[53]:

data_test[‘Age’] = data_test[‘Age’].fillna(data_test[‘Age’].mean())

In[54]:

data_test.fillna(0,inplace = True)

In[55]:

data_test[‘Sex’] = [1 if x == ‘male’ else 0 for x in data_test.Sex]

In[56]:

data_test[‘p1’] = np.array(data_test[‘Pclass’] == 1).astype(np.int32)
data_test[‘p2’] = np.array(data_test[‘Pclass’] == 2).astype(np.int32)
data_test[‘p3’] = np.array(data_test[‘Pclass’] == 3).astype(np.int32)
data_test[‘e1’] = np.array(data_test[‘Embarked’] == ‘S’).astype(np.int32)
data_test[‘e2’] = np.array(data_test[‘Embarked’] == ‘C’).astype(np.int32)
data_test[‘e3’] = np.array(data_test[‘Embarked’] == ‘Q’).astype(np.int32)
del data_test[‘Pclass’]
del data_test[‘Embarked’]

In[57]:

test_lable = pd.read_csv(’./tt/gender.csv’)
test_lable = np.reshape(test_lable.Survived.values.astype(np.float32),(418,1))

In[58]:

test_lable = pd.read_csv(’./tt/gender.csv’)
test_lable = np.reshape(test_lable.Survived.values.astype(np.float32),(418,1))

In[59]:

sess = tf.Session()
sess.run(tf.global_variables_initializer())
loss_train = []
train_acc = []
test_acc = []

In[61]:

for i in range(25000):
index = np.random.permutation(len(data_target))
data_train = data_train[index]
data_target = data_target[index]
for n in range(len(data_target)//100 + 1):
batch_xs = data_train[n100:n100 + 100]
batch_ys = data_target[n100:n100 + 100]
sess.run(train_step,feed_dict={x:batch_xs,y:batch_ys})
if i % 1000==0:
loss_temp = sess.run(loss,feed_dict={x: batch_xs,y: batch_ys})
loss_train.append(loss_temp)
train_acc_temp = sess.run(accuracy,feed_dict={x: batch_xs,y: batch_ys})
train_acc.append(train_acc_temp)
print(loss_temp,train_acc_temp)

In[62]:

for i in range(25000):
index = np.random.permutation(len(data_target))
data_train = data_train[index]
data_target = data_target[index]
for n in range(len(data_target)//100 + 1):
batch_xs = data_train[n100:n100 + 100]
batch_ys = data_target[n100:n100 + 100]
sess.run(train_step,feed_dict={x:batch_xs,y:batch_ys})
if i%1000 == 0:
loss_temp = sess.run(loss,feed_dict={x: batch_xs,y: batch_ys})
loss_train.append(loss_temp)
train_acc_temp = sess.run(accuracy,feed_dict={x: batch_xs,y: batch_ys})
train_acc.append(train_acc_temp)
print(loss_temp,train_acc_temp)

In[64]:

for i in range(25000):
index = np.random.permutation(len(data_target))
data_train = data_train[index]
data_target = data_target[index]
for n in range(len(data_target)//100 + 1):
batch_xs = data_train[n100:n100 + 100]
batch_ys = data_target[n100:n100 + 100]
sess.run(train_step,feed_dict={x:batch_xs,y:batch_ys})
if i%1000 == 0:
loss_temp = sess.run(loss,feed_dict={x: batch_xs,y: batch_ys})
loss_train.append(loss_temp)
train_acc_temp = sess.run(accuracy,feed_dict={x: batch_xs,y: batch_ys})
train_acc.append(train_acc_temp)
print(loss_temp,train_acc_temp)

In[65]:

for i in range(25000):
index = np.random.permutation(len(data_target))
data_train = data_train[index]
data_target = data_target[index]
for n in range(len(data_target)//100 + 1):
batch_xs = data_train[n100:n100 + 100]
batch_ys = data_target[n100:n100 + 100]
sess.run(train_step,feed_dict={x:batch_xs,y:batch_ys})
if i%1000 == 0:
loss_temp = sess.run(loss,feed_dict={x: batch_xs,y: batch_ys})
loss_train.append(loss_temp)
train_acc_temp = sess.run(accuracy,feed_dict={x: batch_xs,y: batch_ys})
train_acc.append(train_acc_temp)
print(loss_temp,train_acc_temp)

In[66]:

for i in range(25000):
#index = np.random.permutation(len(data_target))
#data_train = data_train[index]
#data_target = data_target[index]
for n in range(len(data_target)//100 + 1):
batch_xs = data_train[n100:n100 + 100]
batch_ys = data_target[n100:n100 + 100]
sess.run(train_step,feed_dict={x:batch_xs,y:batch_ys})
if i%1000 == 0:
loss_temp = sess.run(loss,feed_dict={x: batch_xs,y: batch_ys})
loss_train.append(loss_temp)
train_acc_temp = sess.run(accuracy,feed_dict={x: batch_xs,y: batch_ys})
train_acc.append(train_acc_temp)
print(loss_temp,train_acc_temp)

In[67]:

import matplotlib.pyplot as plt

In[68]:

plt.plot(loss_train,‘k-’)
plt.title(‘train loss’)
plt.show()

In[69]:

plt.plot(train_acc,‘b–’,label = ‘train_acc’)
plt.plot(test_acc,‘r–’,label = ‘test_acc’)
plt.title(‘acc’)
plt.legend()
plt.show()

这篇关于tensorflow泰坦尼克号沉船数据预测模型的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1059913

相关文章

Linux下利用select实现串口数据读取过程

《Linux下利用select实现串口数据读取过程》文章介绍Linux中使用select、poll或epoll实现串口数据读取,通过I/O多路复用机制在数据到达时触发读取,避免持续轮询,示例代码展示设... 目录示例代码(使用select实现)代码解释总结在 linux 系统里,我们可以借助 select、

C#使用iText获取PDF的trailer数据的代码示例

《C#使用iText获取PDF的trailer数据的代码示例》开发程序debug的时候,看到了PDF有个trailer数据,挺有意思,于是考虑用代码把它读出来,那么就用到我们常用的iText框架了,所... 目录引言iText 核心概念C# 代码示例步骤 1: 确保已安装 iText步骤 2: C# 代码程

Pandas处理缺失数据的方式汇总

《Pandas处理缺失数据的方式汇总》许多教程中的数据与现实世界中的数据有很大不同,现实世界中的数据很少是干净且同质的,本文我们将讨论处理缺失数据的一些常规注意事项,了解Pandas如何表示缺失数据,... 目录缺失数据约定的权衡Pandas 中的缺失数据None 作为哨兵值NaN:缺失的数值数据Panda

C++中处理文本数据char与string的终极对比指南

《C++中处理文本数据char与string的终极对比指南》在C++编程中char和string是两种用于处理字符数据的类型,但它们在使用方式和功能上有显著的不同,:本文主要介绍C++中处理文本数... 目录1. 基本定义与本质2. 内存管理3. 操作与功能4. 性能特点5. 使用场景6. 相互转换核心区别

Linux五种IO模型的使用解读

《Linux五种IO模型的使用解读》文章系统解析了Linux的五种IO模型(阻塞、非阻塞、IO复用、信号驱动、异步),重点区分同步与异步IO的本质差异,强调同步由用户发起,异步由内核触发,通过对比各模... 目录1.IO模型简介2.五种IO模型2.1 IO模型分析方法2.2 阻塞IO2.3 非阻塞IO2.4

python库pydantic数据验证和设置管理库的用途

《python库pydantic数据验证和设置管理库的用途》pydantic是一个用于数据验证和设置管理的Python库,它主要利用Python类型注解来定义数据模型的结构和验证规则,本文给大家介绍p... 目录主要特点和用途:Field数值验证参数总结pydantic 是一个让你能够 confidentl

JAVA实现亿级千万级数据顺序导出的示例代码

《JAVA实现亿级千万级数据顺序导出的示例代码》本文主要介绍了JAVA实现亿级千万级数据顺序导出的示例代码,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面... 前提:主要考虑控制内存占用空间,避免出现同时导出,导致主程序OOM问题。实现思路:A.启用线程池

SpringBoot分段处理List集合多线程批量插入数据方式

《SpringBoot分段处理List集合多线程批量插入数据方式》文章介绍如何处理大数据量List批量插入数据库的优化方案:通过拆分List并分配独立线程处理,结合Spring线程池与异步方法提升效率... 目录项目场景解决方案1.实体类2.Mapper3.spring容器注入线程池bejsan对象4.创建

PHP轻松处理千万行数据的方法详解

《PHP轻松处理千万行数据的方法详解》说到处理大数据集,PHP通常不是第一个想到的语言,但如果你曾经需要处理数百万行数据而不让服务器崩溃或内存耗尽,你就会知道PHP用对了工具有多强大,下面小编就... 目录问题的本质php 中的数据流处理:为什么必不可少生成器:内存高效的迭代方式流量控制:避免系统过载一次性

Python的Darts库实现时间序列预测

《Python的Darts库实现时间序列预测》Darts一个集统计、机器学习与深度学习模型于一体的Python时间序列预测库,本文主要介绍了Python的Darts库实现时间序列预测,感兴趣的可以了解... 目录目录一、什么是 Darts?二、安装与基本配置安装 Darts导入基础模块三、时间序列数据结构与